Name: Id#

COE 200, Term 023 Fundamentals of Computer Engineering

Quiz# 2

Date: Saturday, July 12, 2003

- Q1. Consider the following two numbers A=-98 and B=33:
 - a. Express the two numbers in **Sign-Magnitude**, **1**'s **complement** and **2**'s **complement** notations, assuming **8-bit representation**.
 - b. Perform the operation **A-B** two times, once using **1**'s complement notation and once using **2**'s complement notation.
- Q2. Determine, in <u>binary</u> and <u>decimal</u>, the smallest (negative) number and the largest (positive) number that can be stored using **Sign-Magnitude**, **1's Complement** and **2's complement** notations, assuming **12-bit** representation.

COE 200, Term 023 Fundamentals of Computer Engineering

Quiz# 2

Date: Saturday, July 12, 2003

Q1. Consider the following two numbers A=-98 and B=33:

a. Express the two numbers in Sign-Magnitude, 1's complement and 2's complement notations, assuming 8-bit representation.

Number	Sign-magnitude	11's Comp.	21s Comp
98	01100010	· 1100010	01/00/0
-98	11100010	100 11101	10011110
33	00100001	00100001	10000100

b. Perform the operation A-B two times, once using 1's complement notation and once using 2's complement notation.

overflow because the sign-bit has changed the correct result should be -131 which cannot be represented in B-bits.

Q2. Determine, in <u>binary</u> and <u>decimal</u>, the smallest (negative) number and the largest (positive) number that can be stored using **Sign-Magnitude**, 1's **Complement** and 2's **complement** notations, assuming 12-bit representation.

- Ils complement:
-
$$\frac{1}{2}$$
 complement:
- $\frac{1}{2}$ complement:
-