COMPUTER ENGINEERING DEPARTMENT

COE 202

FUNDAMENTALS OF COMPUTER ENGINEERING

Major Exam I

Second Semester (052)

Time: 7:30-9:30 PM

Student Name	e:
Student ID.	:

Question	Max Points	Score
Q1	25	
Q2	18	
Q3	12	
Q4	20	
Q5	25	
Total	100	

Dr. Aiman El-Maleh

- (Q1) Indicate whether the following is true or false, and if it is false **correct** it:
 - (1) (True, False) The hexadecimal number $(421)_{16}$ is equal to the octal number $(841)_8$.
 - (2) (True, False) The binary number $(1110.0111)_2$ is equal to $(14.875)_{10}$, $(E.7)_{16}$ and $(16.7)_8$.

(3) (True, False) The 16's complement of the hexadecimal number $(B120)_{16}$ is $(4EE0)_{16}$ while the 15's complement is $(4ED0)_{16}$.

(4) (True, False) Assuming 6-bit representation of numbers, the binary number 111010 is equal to +58 in sign-magnitude representation, -5 in 1's complement representation, and -4 in 2's complement representation.

(5) (True, False) The decimal number 2048 can be represented as an unsigned number in 11 bits.

(6) (True, False) Assuming 5-bit 1's complement representation of numbers, then 11011+01001 is equal to 00101.					
(7) (True, False) Assuming 6-bit 2's complement representation, the range of numbers that can be represented is -63 to +63.					
(8) (True, False) Assuming 8-bit 2's complement representation of numbers, then E6+9A produces overflow i.e. it produces incorrect result.					
(9) (True, False) The result of the following addition operation $(AA)_{16} + (13)_{16}$ is $(123)_{16}$.					
(10) (True, False) The result of the following unsigned multiplication operation $(A15)_{16} * (8)_{16}$ is $(50A8)_{16}$.					

(Q2) Prove the identity of each of the following Boolean functions using algebraic manipulation. Start with the left-hand side expression and derive from it the right-hand side expression. *Clearly indicate the postulates and theorems used*.

(i)
$$(a+b)(a^2+c)(b+c) = a^2b + ac$$

(ii)
$$\{ [b` + (a+c)` + a`(c`+d)][d` + b`c`] \}` = b (a+c) + d (b+c)$$

(Q3) Given the function $F(A, B, C)=A+B^C$

- (i) Determine the minterms of the function F and express it as an algebraic sum of minterms.
- (ii) Determine the maxterms of the function F and express it as an algebraic product of maxterms.

- (Q4) Consider the function $F(A, B, C) = \prod M(3, 5)$.
 - (i) Simplify the function into a minimal sum-of-products expression.
 - (ii) Simplify the function into a minimal product-of-sums expression.
 - (iii) Implement the function using only **2-input NAND** gates and **Inverters**, with <u>minimal</u> number of gates. Draw the circuit diagram for your implementation.
 - (iv) Implement the function using only **2-input NOR** gates and **Inverters**, with $\underline{\text{minimal}}$ number of gates. Draw the circuit diagram for your implementation.

(Q5) Simplify the following Boolean functions F together with the don't care conditions d, into <u>minimal</u> sum-of-products expressions. Identify all the <u>prime implicants</u> and the <u>essential</u> <u>prime implicants</u>.

(i) $F(A, B, C, D)=\Sigma m(0, 6, 7, 9, 11, 13, 15), d(A, B, C, D)=\Sigma m(2, 5, 8, 10)$

CI AB	00	01	11	10
00	1	0	0	X
01	0	X	1	1
11	0	1	1	0
10	X	1	1	X

(ii) $F(A, B, C, D, E) = \Sigma m(0, 1, 2, 3, 4, 6, 10, 11, 14, 17, 18, 21, 22, 25, 26, 27, 29, 30)$

BC 00

A=0

BC 00

A=1