KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COLLEGE OF COMPUTER SCIENCES & ENGINEERING

COE 301 Computer Organization ICS 233 Computer Architecture & Assembly Language Syllabus - Term 172

Catalog Description

Introduction to computer organization, machine instructions, addressing modes, assembly language programming, integer and floating-point arithmetic, CPU performance and metrics, non-pipelined and pipelined processor design, datapath and control unit, pipeline hazards, memory system and cache memory.

Prerequisite: COE 202 and ICS 201

Instructor Dr. Aiman H. El-Maleh. Room: 22/407-5 Phone: 2811

Email: aimane@kfupm.edu.sa

Office Hours MW 12:10-1:00 PM and by appointment Text Books

• David A. Patterson and John L. Hennessy, *Computer Organization and Design: The Hardware /Software Interface*, Fifth Edition, Morgan Kauffmann Publishers, 2013.

Course Learning Outcomes

After successfully completing the course, students will be able to:

- 1. Describe the instruction set architecture of a MIPS processor
- 2. Analyze, write, and test MIPS assembly programs
- 3. Describe organization and operation of integer and floating-point arithmetic units
- 4. Design the datapath and control of a single-cycle (non-pipelined) CPU
- 5. Design the datapath and control of a pipelined CPU and handle hazards
- 6. Describe the organization and operation of memory and caches
- 7. Analyze the performance of processors and caches

Grading Policy

Discussions	3%
Programming Assignments	8%
Quizzes	9%
Midterm Exam	25%

Midterm Exam 25% (Sat., March 24, 10:00 AM)

Laboratory 10% Project 15% Final 30%

- Attendance will be taken regularly. The tenth unexcused absence results in a DN grade
- Excuses for officially authorized absences must be presented no later than one week following resumption of class attendance.
- For every two missed classes, 0.5 will be deducted from the classwork marks.
- Late assignments will be accepted (up to 3 days) but you will be penalized 10% per each late day.
- A student caught cheating in any of the assignments will get 0 out of 8%.
- No makeup will be made for missing Quizzes or Exams.

Course Topics

Week	Topics
1	Introduction to computer organization, high-level, assembly, and machine languages. Components of a computer system.
2	 Memory Hierarchy, Fetch-Execute Cycle. Technology Improvements. Introduction to assembly language programming, instructions, registers, assembly language statements, directives, text, data, and stack segments. Defining data, arrays, and strings. Memory alignment, byte ordering, and symbol table. System calls, console input and output.
3	 Integer storage sizes, review of binary addition and subtraction, carry and overflow. MIPS instruction set architecture, instruction formats, R-type integer arithmetic, logic, and shift instructions, immediate operands, I-type arithmetic and logic instructions, pseudo-instructions.
4	 MIPS Integer multiply and divide instructions. Control flow, branch and jump instructions, translating if-else statements and logical expressions. Compare instructions, and conditional-move instructions.
5	 Arrays, allocating arrays statically in the data segment and dynamically on the heap, computing the memory addresses of array elements. Load and store instructions, translating loops, using pointers to traverse arrays, addressing modes, jump and branch limits.
6	 Defining functions (procedures) in assembly language, function call and return instructions. Passing arguments by value and by reference in registers, and the return address register. The stack segment, allocating and freeing stack frames, leaf versus non-leaf functions, preserving registers across function calls. Allocating and referencing a local array on the stack. Bubble Sort example and its translation into assembly code. Recursive functions, translating recursive functions into assembly language.
7 & 8	 Floating point representation, IEEE 754 standard, de-normalized numbers, zero, infinity, NaN. FP comparison, FP addition, FP multiplication, rounding and accurate arithmetic. MIPS floating-point instructions: load/store, arithmetic, data movement, convert, compare, branch, FP system calls. Floating-point programs. Example on Matrix Multiplication.
9 & 10	 Designing a processor, register transfer level, datapath components, clocking methodology, single-cycle datapath, implementing a register file and multifunction ALU. Control signals and control unit, ALU control, single-cycle delay analysis and clock cycle.

11	 CPU performance and metrics, CPI of a multi-cycle processor, performance equation, performance comparison of a single-cycle versus a multi-cycle processor. Amdahl's law, energy and power consumption, benchmarks and performance of recent processors.
12 & 13	 Pipelining versus serial execution, timing diagrams, MIPS 5-stage pipeline, pipelined datapath, pipelined control, pipeline performance Pipeline hazards: structural, data, and control hazards, load delay, hazard detection, stall and forwarding unit, delayed branching, and branch prediction.
14 &15	 Main memory organization, SRAM vs DRAM storage cells, DRAM refresh cycles, latency and bandwidth, trends in DRAMs, memory hierarchy, cache memory, locality of reference. Cache memory organization: direct-mapped, fully-associative, and set-associative caches, handling cache miss, write policy, write buffer, and replacement policy. Cache performance, memory stall cycles, and average memory access time.
	Introduction to multi-level caches, multi-level cache performance.