KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COLLEGE OF COMPUTER SCIENCES & ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

COE 405 Design and Modeling of Digital Systems (3-0-3) Syllabus - Term 162

Catalog Description

Review of sequential circuits design and analysis, Data path and control unit design, Design with Hardware Description languages (HDL), Design with Field-Programmable Gate Arrays (FPGAs), Block interfacing.

Prerequisite: COE 202 Logic Design

InstructorDr. Aiman H. El-Maleh.Room: 22/407-5Phone: 2811Email:aimane@kfupm.edu.sa

Office Hours UTR 12:15-1:00 PM, MW 11:00AM – 12:00PM and by appointment

Course Objectives

Introduce students to the design methodologies of digital systems with special emphasis on FPGA implementations.

Course Learning Outcomes

- 1. Data Path and Control Unit design
- 2. Digital systems modeling using hardware description languages (Verilog HDL)
- 3. Simulation of digital systems
- 4. Synthesis and FPGA implementation of digital systems

Text book: M. D. Ciletti, "Advanced Digital Design with the Verilog HDL," (Prentice Hall), 2/e 2010.

References:

- 1. "Verilog Styles for Synthesis of Digital Systems", David R. Smith and Paul D. Franzon, Prentice Hall, ISBN 0-201-61860-5
- 2. On line Verilog resources:
 - i. http://www.doulos.com/knowhow/verilog_designers_guide/
 - ii. http://www.sutherland-hdl.com/online verilog ref guide/vlog ref top.html

Grading Policy

Discussions	5%
Assignments	15%
Quizzes	10%
Midterm	25% (Sat. March 25, 1:00 PM)
Project	20%
Final	25%

- Attendance will be taken regularly.
- Excuses for officially authorized absences must be presented no later than one week following resumption of class attendance.
- Late assignments will be accepted (upto 3 days) but you will be penalized 10% per each late day.
- A student caught cheating in any of the assignments will get 0 out of 15%.
- No makeup will be made for missing Quizzes or Exams.

Course Outline:

Week	Topics
1	Introduction to Digital Design Methodology, Digital System Design Cycle, Design Space and Evaluation Space, Dealing with Design Complexity, Design Domains & Levels of Abstraction, Design vs. Synthesis, Synthesis Process.
2-3	Review of combinational logic design. Shannon's Expansion, Boolean Expansion Based on Orthonormal Basis, Simplification using Don't care conditions, Iterative Combinational Circuit Design.
4	Review of Sequential circuit design, Mealy versus Moore Machines, timing constraints, State minimization, State assignment, Retiming.
5-7	Design of a digital system by partitioning it into a Data Path and Control unit Design of DP and CU. Algorithmic State Machine (ASM) charts.
8-10	Introduction to logic design with Verilog: structural models of combinational logic, logic system, design verification and test methodology, propagation delay, truth table models of combinational and sequential logic with Verilog. Logic design with behavioral models of combinational and sequential logic: continuous assignment models, dataflow/RTL models, algorithmic based models.
11-12	Synthesis of combinational and sequential logic: Introduction to synthesis, synthesis of combinational logic, Multilevel Logic Synthesis, Area and Delay estimation, Timing Issues in Multiple-Level Logic Optimization, Synthesis & Testability, High-Level Synthesis.
13-14	Synthesis of sequential logic, synthesis of three-state devices and bus interfaces, synthesis of explicit state machines, synthesis of implicit state machines, synthesis of loops, Design and synthesis of Datapath controllers, Block interfacing.
15	Field Programmable Gate Arrays (FPGAs), FPGA technologies, Verilog based design flows for FPGAs, Design and synthesis with FPGAs, FPGA Memory Implementation, LUT-Based RAMS, Block RAM.