
 CHAPTER 0

INTRODUCTION TO TCP/IP

This chapter gives an overview of TCP/IP networking principles that form the basis of
discussion for many of the laboratories that are covered in this text. Using the example of a
web access, the chapter gives some insight into the intricacies and complexities of TCP/IP
networking. The chapter also provides an in-depth discussion of IP addresses and other
addressing schemes used in the Internet.

TABLE OF CONTENTS

1. A TCP/IP NETWORKING EXAMPLE 1

2. THE TCP/IP PROTOCOL SUITE 8

2.1. AN OVERVIEW OF THE TCP/IP PROTOCOL SUITE 9

2.2. ENCAPSULATION AND DEMULTIPLEXING 12

2.3. DIFFERENT VIEWS OF A NETWORK 17

3. THE INTERNET 20

3.1. A BRIEF HISTORY 20

3.2. INFRASTRUCTURE OF THE INTERNET 21

3.3. ADMINISTRATION AND STANDARD BODIES OF THE INTERNET 24

4. ADDRESSES AND NUMBERS 26

4.1. MEDIA ACCESS CONTROL (MAC) ADDRESSES 26

4.2. PORT NUMBERS 28

4.3. IP ADDRESSES 28

4.3.1. SUBNETTING 30

4.3.2. CLASSFUL ADDRESSES 33

4.3.3. CLASSLESS INTER DOMAIN ROUTING (CIDR) 36

4.3.4. THE FUTURE OF IP ADDRESSES 38

5. APPLICATION LAYER PROTOCOLS 38

5.1. FILE TRANSFER 39

 ii

5.2. REMOTE LOGIN 42

5.3. ELECTRONIC MAIL 44

5.4. THE WEB 47

5.5. RECENT APPLICATIONS 52

1. A TCP/IP Networking Example

Consider a web browser (a web client) at a host with name Argon.cerf.edu (“Argon”) that makes
a web access to a web server on a host with name Neon.cerf.edu (“Neon”).1 The web access is
illustrated in Figure 0.1. Both hosts are connected to the Internet. The web access is a request
for the home page of the web server with URL http://Neon.cerf.edu/index.html.

argon.cerf.edu
("Argon")

neon.cerf.edu
("Neon")

Web request

Web page

Web client Web server

Figure 0.1. A simple web request.

We will explore what happens in the network when the web request is issued. We proceed, by
following the steps that are performed by network protocols until the first packet from Argon
reaches the web server at Neon. An outline of the steps involved is given in the table below.
The example in this section is based on real traffic measurements, however, the names of the
host have been changed.

A web client and a web server are programs that interact with each other using the Hypertext
Transfer Protocol (HTTP). HTTP is a client-server protocol; the web client runs an HTTP client
program and the web server runs an HTTP server program. When a web client requests a web
page, the HTTP client sends an HTTP Request message to the HTTP server. When the web
server finds the web page, the HTTP server sends the page in an HTTP Reply message.

HTTP uses the Transmission Control Protocol (TCP) to deliver data between the HTTP client
and the HTTP server. When the HTTP client at Argon wants to send an HTTP request, it must
first establish a TCP connection to the HTTP server at Neon (see Figure 0.2).

1 Throughout we use the term host refers to a computer , or more generally, to any end system of communications.

0.2

1. Web client at Argon starts an HTTP Request.
2. Argon contacts its DNS server to translate the domain name “neon.cerf.edu” into IP address

“128.143.71.21” and looks up the well-known port number of the web server (port 80).
3. The HTTP client at Argon requests a TCP connection to port 80 at IP address

128.143.71.21.
4. The TCP client at Argon requests its Internet Protocol (IP) to deliver an IP datagram with

the connection request to destination 128.143.71.21.
5. The IP process at Argon decides that it cannot deliver the IP datagram directly, and decides

to send the IP datagram to its default gateway 128.143.137.1.
6. The Address Resolution Protocol (ARP) at Argon sends an ARP request for the MAC

address of IP address 128.143.137.1.
7. The ARP request is broadcast by the Ethernet device driver at Argon to all devices on the

Ethernet network.
8. The router with IP address 128.143.137.1 responds with an ARP Response to Argon which

includes MAC address 00:e0:f9:23:a8:20.
9. The IP process at Argon asks its Ethernet device driver to send the IP datagram in an

Ethernet frame to MAC address 00:e0:f9:23:a8:20.
10. Ethernet device driver at router with MAC address 00:e0:f9:23:a8:20 unpacks the IP

datagram, and passes it to its IP process.
11. The IP process at the router decides that it can deliver the IP datagram with destination

128.143.137.21 directly (without the need of additional routers).
12. The Address Resolution Protocol (ARP) at the router sends an ARP request for the MAC

address of IP address 128.143.137.21.
13. The ARP request is broadcast by the Ethernet device driver at the router to all devices on the

Ethernet network.
14. Neon (which has IP address 128.143.137.21) responds with an ARP Response to the router

which includes MAC address 00:20:af:03:98:28.
15. The IP process at the router asks its Ethernet device driver to send the IP datagram in an

Ethernet frame to MAC address 00:20:af:03:98:28.
16. The Ethernet device driver at Neon unpacks the IP datagram contained in the Ethernet

frame, and passes it to its IP process.
17. The IP process unpacks the TCP connection request contained in the IP datagram and passes

it to the TCP server at port 80.
18. The TCP server at port 80 processes the TCP connection request.

Table 0.1. Overview of the steps of the networking example.

0.3

HTTP client

TCP client

Argon

HTTP server

TCP server

Neon

HTTP request / HTTP response

TCP connection

Figure 0.2 An HTTP session invoking a TCP/IP transmission

Before the HTTP client at Argon can ask the TCP protocol to establish a connection, it must
resolve an addressing issue. The TCP protocol expects that addresses be written in terms of an
IP address and a port number. An IP address is a 32-bit identifier that uniquely identifies a
network interface connected to the Internet. Every network interface that is connected to the
Internet has an IP address. The IP address of Argon’s network interface is 128.143.137.144.
Each byte (1 byte = 8 bits2) of the IP address is written as a decimal number, and the four
numbers are separated by periods. A port number is a 16-bit address that can be used to identify
an application program on a system. Together, an IP address and a port number can uniquely
identify an application on the Internet.

HTTP client DNS Server

argon.cerf.edu 128.143.136.15

neon.cerf.edu

128.143.71.21

Figure 0.3. A DNS lookup for the IP address

Le us now see how the HTTP client at Argon determines the IP address and the port number of
the web server at Neon. The IP address is determined using an Internet-wide address translation
service, called the Domain Name System (DNS), that translates symbolic domain names, such as
Neon.cerf.edu, into IP addresses, and vice versa. A host invokes the DNS service by sending a
request to its DNS server. The location of the DNS server of a host is part of the network
configuration of a host. Skipping over a lot of detail, Argon sends a query to its DNS server with
the domain name “Neon.cerf.edu”, and obtains in return the IP address for 128.143.71.21 (see
Figure 0.3).

2 Throughout this book, we use the convention that 1 byte is always 8 bits. The networking literature also uses the term “octet”

to refer to a group of 8 bits.

0.4

Once the IP address is obtained, determining the port number of the HTTP server at Neon is
simple. On the Internet, the server programs of widely used applications have permanently
assigned port number, called well-known port numbers, and are stored in a configuration file of
a host. The well-known port number of an HTTP server is port 80. When Argon contacts the
HTTP server of Neon it assumes that the web server is reachable at port number 80.

Now, the HTTP client at Argon has the information needed to establish a TCP connection, and
requests a TCP connection to port 80 at IP address 128.143.71.21. Like HTTP, TCP is a client-
server protocol. The party that initiates the connection is called the TCP client. The party that is
waiting for connection is called the TCP server. When a web server is started, the HTTP server
sets up a TCP server that is waiting on the well-known port 80 for requests for TCP
connections. The details of establishing a TCP connection a covered later in this book. Here we
only note that the establishment of a TCP connection involves three steps: (1) the TCP client
sends a TCP connection request to the TCP server, (2) the TCP server responds to the request,
(3) the TCP client acknowledges this response and starts to send data. Here, we only follow the
first step of the connection establishment procedure, where TCP sends a connection request to
port 80 of IP address 128.143.71.21. We point out that this connection request does not contain
any data. The HTTP request with the URL will be sent in the third step of the establishment
procedure.

We now follow the steps that are involved to deliver the TCP connection request from Argon to
Neon. The TCP client at Argon asks IP, the Internet Protocol, to deliver the connection request
to IP address 128.143.71.21. IP takes the connection request, encapsulates it in an IP datagram
(an IP datagram is the name of a packet in the Internet protocol), and delivers the IP datagram to
Neon.

The network shown in Figure 0.4 gives an overview of what is involved in delivering the IP
datagram from Argon to Neon. The figure shows that Argon and Neon are each connected to an
Ethernet local area network. The picture shows that the path (route), of an IP datagram from
Argon to Neon goes through a router which connects the two Ethernet. A router, also called IP
router or gateway, is a switching device with multiple network interface cards (NICs), which
takes an IP datagram that arrives on one of its network interfaces and forwards the datagram on
a different interface, with the intent to move the IP datagram closer to its destination. The
forwarding decision is based on a routing table, which lists the name of a network interface for a
set of destination addresses. Note in Figure 0.4 that the router has a domain name and an IP
address for each of its network interfaces.

When Argon has the IP datagram for destination 128.143.71.21, it does not know the route that
the IP datagram will take to its destination. The IP module at Argon merely determines if the IP
datagram can be delivered directly to Neon, or if the datagram must be send to a router. A
datagram can be delivered directly without the need for intermediate routers, if the sender and
receiver are both connected to the same local network. Argon makes a decision whether Neon is
on the same local network, by comparing the IP address of Neon with its own IP address. In
this particular case, Argon assumes that IP addresses that match its own IP address

0.5

(128.143.137.144) in the first three bytes belong to interfaces that are on the same local network
as Argon, and all other IP addresses are not on the same local network. With this criterion, Neon
is on a different local network and Argon tries to forward the IP datagram to its default gateway.
The default gateway of a host is the IP address of a router, and is part of the network
configuration of any host. Argon’s default gateway is 128.143.137.1, with domain name
router137.cerf.edu (“Router137”). Therefore, Argon sends the IP datagram to Router137.

neon.cerf.edu
"Neon"

128.143.71.21

argon.cerf.edu
"Argon"
128.143.137.144

router137.cerf.edu
"Router137"

128.143.137.1

router71.cerf.edu
"Router71"
128.143.71.1

Ethernet NetworkEthernet Network

Router

Figure 0.4. The route between Argon and Neon. The router in the center of the figure is referred to by any of the names

associated its interfaces (“Router137” or “Router71”).

To forward the IP datagram to the default gateway 128.143.137.1, Argon passes the IP
datagram to the Ethernet device driver of its network interface card. The device driver will
insert the IP datagram in an Ethernet frame (Ethernet packets are called frames), and transmit
the frame on the Ethernet network. However, Ethernet frames do not use IP addresses, but have
an addressing scheme that is based on 48 bit long MAC (media access control) addresses. MAC
addresses are written in hexadecimal notation, where each byte is separated by a colon or a
hyphen. For example, Argon’s MAC address is 00:a0:24:71:e4:44. Each Ethernet frame
contains the MAC addresses of the source and the destination of the frame. Before IP can pass
the datagram to the Ethernet device driver, it must find out the MAC address that corresponds to
IP address 128.143.137.1. The translation between IP addresses and MAC addresses is done
with the help of the Address Resolution Protocol (ARP).

The translation of addresses using ARP and the subsequent transmission of the frame that holds
the IP datagram steps are shown in Figure 0.5. First, Argon sends out an ARP message of the

0.6

form “What is the MAC address of 128.143.137.1?”. The ARP message is sent in an Ethernet
frame that is broadcast to all Ethernet devices on the same network. When Router137, which
has IP address 128.143.137.1, receives the ARP message, it responds with an ARP message that
states “IP address 128.143.137.1 belongs to MAC address 00:e0:f9:23:a8:20”. Finally, when
Argon receives this message, it passes the MAC address of the default gateway together with the
IP datagram to the device driver and transmits the frame. In total, three Ethernet frames are
transmitted on the Ethernet network. (We note that subsequent transmissions of IP datagrams
from Argon to Router137 do not require ARP messages. Argon keeps a list of known MAC
addresses in a local table.)

argon.cerf.edu
128.143.137.144
00:a0:24:71:e4:44

ARP message: What is the MAC
address of 128.143.71.1?

ARP message: IP address 128.143.71.1
belongs to MAC address 00:e0:f9:23:a8:20

IP Datagram for Neon

router137.cerf.edu
128.143.137.1
00:e0:f9:23:a8:20

Figure 0.5. Ethernet frames transmitted to deliver the IP datagram to router137.cerf.edu.

When Router137 receives the Ethernet frame from Argon, it first extracts the IP datagram and
passes the datagram to the IP module. Once Router137 receives the IP datagram from Argon, it
makes a similar decision as Argon, that is, it determines if the datagram can be forwarded
directly to Neon or it selects a router from its local routing table and forwards the packet to
another router. Router137 has multiple network interfaces, and, therefore, checks if the
destination of the IP datagram is directly through any of its interfaces. To determine if a node is
locally reachable, the router tries to match the first three bytes of the IP address of Neon, which
is included in the IP datagram, to the IP addresses of its own interfaces: 128.143.137.1 and
128.143.71.1. Since a match occurs for 128.143.71.1, the router tries to forward the IP datagram
directly to Neon.

The transmission of the IP datagram from the router to Neon, goes through the same steps as the
delivery of the IP datagram from Argon to the router. First, the router acquires the Ethernet
address of Neon, by sending an ARP request on the Ethernet interface which is associated with
IP address 128.143.71.21. Neon sends its MAC address, 00:20:af:03:98:28, in an ARP response
message. As soon as the router receives the MAC address of Neon, it sends an Ethernet frame
that contains the IP datagram to Neon. Again, three Ethernet frames are as shown in Figure 0.6.

0.7

ARP message: What is the MAC
address of 128.143.71.21?

ARP message: IP address 128.143.71.21
belongs to MAC address 00:20:af:03:98:28

IP Datagram for Neon

neon.cerf.edu
128.143.71.21

00:20:af:03:98:28

router71.cerf.edu
128.143.71.1

Figure 0.6. Ethernet frames transmitted to deliver the IP datagram from the router to Neon.

When Neon receives the Ethernet frame from Router713, it first extracts the IP datagram, and
then delivers the TCP segment to the TCP server at port 80. At this time, the delivery of the first
IP datagram from Argon to Neon, which contains the TCP connection request, is completed.
What will happen next is that the TCP server at Neon responds to the TCP connection request,
which involves the transmission of an IP datagram from Neon to Argon. The steps involved in
delivering this IP datagram are identical to what we saw earlier. When the response is received
at Argon, Argon can start to transmit the HTTP request.

The above description gives a good picture of the complexity of transferring data from one host
to another. As you work your way through the chapters of this book, you will become familiar
with each of the steps described above and you will understand the intricacies of this example.

3 Note that from the perspective of Neon, the domain name of the router is router71.cerf.edu.

0.8

2. The TCP/IP protocol suite

The transport of data as shown in the example in the previous section is governed by a set of
protocols that constitutes the TCP/IP protocol suite, also called Internet protocol architecture or
Internet protocol stack. The protocols are organized in four layers, as shown in Figure 0.8: an
application layer, a transport layer, a network layer, and a data link (or network interface) layer.
Each protocol is assigned to one layer. At any given layer, a protocol requests the services of a
protocol in a layer immediately below it, and provides services to a protocol in a layer
immediately above it. The service requests generally relate to the delivery of data. This is
shown in Figure 0.7, for the Web example from the previous section. When the HTTP client at
Argon wants to send an HTTP request to the HTTP server at Neon, it requests from TCP the
establishment of a TCP connection. Then TCP requests from IP the transmission of an IP
datagram, which, in turn, requests from the Ethernet device driver the delivery of an Ethernet
frame. Not shown in the figure is that the Ethernet device driver requests transmission from the
MAC layer, which, in turn, requests the transmission of a bit stream. Whenever a protocol at a
certain protocol layer wants to send data to a remote peer at the same layer, it actually passes the
data to the layer below it, and asks that layer to perform the delivery of data. In this way, data
can be thought of as traveling vertically through the protocol stack.

HTTP client

TCP client

argon.tcpip-lab.edu

IP

Send an IP datagram to
128.143.71.21

Establish a TCP connection
to port 80 of 128.143.71.21

Ethernet

Send an Ethernet frame
to 00:e0:f9:23:a8:20

Figure 0.7. Invoking an IP connection to the remote host at IP address: 128.143.71.21

0.9

2.1. An Overview of the TCP/IP protocol suite

The TCP/IP protocol suite does not specify nor require specific networking hardware. The only
assumption that the TCP/IP protocol suite makes is that the networking hardware, also called
physical network , supports the transmission of an IP datagram. The lowest layer of the TCP/IP
protocol suite, the data link layer, is concerned with interfacing to a physical network.
Whenever a new network hardware technology emerges all that is needed to run Internet
applications over the new hardware is an interface at the data link layer that supports the
transmission of an IP datagram packet over the new hardware. This minimal dependence of the
TCP/IP protocol suite on the underlying networking hardware contributes significantly to the
ability of the Internet protocols to adapt to advances in networking hardware.

Application

Transport

Network Operating system

User-level programs

Data Link

Figure 0.8. The Internet Protocol Stack

We next provide an overview of the layers of the TCP/IP protocol suite. At the application layer
are protocols that support application programs. For example, the HTTP protocol is an
application layer protocol that supports web browsers and web servers. Other protocols at the
application layer are support of electronic mail (POP3, SMTP), file transfers (FTP), or
command line interfaces to remote computers (Telnet, SSH).

The transport layer, also called host-to-host layer, is responsible for the exchange of
application-layer messages between hosts. There are two transport-layer protocols in the TCP/IP
protocol suite: the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP).
TCP offers a reliable data service which ensures that all data from the sender is received at the
destination. If data is lost or corrupted in the network, TCP will perform a retransmission. UDP
is a much simpler protocol which does not make guarantees that delivery of data is successful.

The network layer, also called internet layer, addresses issues involved with forwarding data
from a host to the destination across intermediate routers. All data transport at the network layer
is handled by the Internet Protocol (IP). IP receives support from other protocols, such as the
Internet Control and Messaging Protocol (ICMP) and the Internet Group Management Protocol

0.10

(IGMP) which perform error reporting and other functions. Also, IP relies on routing protocols,
such as the Routing Information Protocol (RIP) or Open Shortest Path First (OSFP), or Border
Gateway Protocol (BGP), which determine the content of the routing table at IP routers.

The data link layer, also called network access layer or interface layer, is concerned with
sending and receiving data across either a point-to-point link or a local area network. There is a
large variety data link layer protocols for local area networks and point to point links. Each data
link layer protocol offers a hardware independent interface to the networking hardware. The
functions of a data link layer protocol are partially implemented in hardware (on the network
interface card) and partially in software (in the device driver). Most local area networks are
broadcast networks where the transmission of a packet can be received by more than one host.
In such networks, the data link layer has a sub-layer, which is called the Media Access Control
(MAC) layer. The MAC layer can be thought of as residing at the bottom of the data link layer.
The MAC layer runs a protocol that determines when a station on the local area network has
permission to transmit. The MAC layer is realized in hardware on the network interface card
and is not visible at the network layer or higher layers. Below the data link layer is the physical
layer, which consists of the hardware that generates and interprets electrical or optical signals,
and the cables and connectors that carry the signals.

HTTP

TCP

IP

Ethernet

HTTP

TCP

IP

Ethernet

HTTP protocol

TCP protocol

IP protocol

Ethernet

IP

Router
(Router137, Router71)

Host
(Neon)

Host
(Argon)

IP protocol

Ethernet Ethernet Ethernet

Figure 0.9. Protocols involved in data exchange between two hosts.

Figure 0.9 shows the protocols that are involved in the web access example between Argon and
Neon. At each host, the figure shows protocol instantiations (entities) for HTTP, TCP, IP and
Ethernet, where the Ethernet entity encompasses the data link layer, including the MAC layer,
and the physical layer. At each layer, a protocol entity interacts with an entity of the same layer
at a different system. The HTTP client at Argon interacts with an HTTP server at Neon, the TCP
client at Argon interacts with the TCP server at Neon, and the IP and Ethernet entities at the
hosts interact with corresponding entities at the router. Figure 0.9 illustrates that the routers do
not have entities at the transport and application layer. Protocols at these layers are end-to-end

0.11

protocols, and are not aware of the existence or the number of routers between two hosts.
Conversely, routers do not interpret messages at the application or transport layer.

In Figure 0.10 we show the assignment of all protocols discussed in this book to the layers of
the TCP/IP protocol suite. Figure 0.10 is not complete and shows only a subset of the protocols
used in the TCP/IP protocol suite. An arrow in the figure indicates how protocols request
services from each other. For example, HTTP requests the services of TCP, which, in turn,
requests the services of IP, and so on. Figure 0.10 shows protocols that we have not mentioned
so far. SNMP, the Simple Network Management Protocol, is used for remote monitoring and
administration of equipment in an IP network. With exception of the ping program, all
applications shown in the figure use the services of TCP or UDP, or, as in the case of DNS,
both.

RIP, OSPF and PIM are routing protocols which determine the content of the routing tables at
IP routers. Interestingly, RIP sends routing messages with UDP, a transport layer protocol.
ICMP is a helper protocol to IP, which performs error reporting and other functions. IGMP is
used for group communications.

The ARP protocol, which translates IP addresses to MAC addresses, so that IP can send frames
over a local area network communicates directly with the data link layer.

Figure 0.10 clearly illustrates the central role of IP in the TCP/IP protocol suite. IP carries all
application data, and can neither be bypassed nor replaced.

0.12

Network
Layer

Routing Protocols

PIM

OSPF

RIP

Application
Layer

Data Link
Layer

IP

ARP Ethernet

Network
Interface

Transport
Layer

TCP UDP

SNMPFTP DNSHTTP

ICMP

IGMP

ping
application Telnet

DHCP

Figure 0.10. Assignment of Protocols to Layers.

2.2. Encapsulation and Demultiplexing

When data is passed from a higher layer to the next lower layer, a certain amount of control
information is attached to the data. The control information is generally added in front of the
data, and is called a header. If the control information is appended to the data, it is called a
trailer. All protocols have headers and, but only very few have trailers. The process of adding
header and trailers to data is called encapsulation. The data between the header and the trailer is
called the payload. Together, header, payload, and (if present) trailer, make up a protocol data
unit. There is a convention for naming protocol data units in the TCP/IP protocol suite: In TCP
they are called segments, in UDP and IP, they are called datagrams, and at the data link layer,
they are called frames. The generic name packet is used when the protocol data unit does not
refer to a specific protocol or layer. The encapsulation process is illustrated in Figure 0.11. The
protocol data unit at one layer makes up the payload at the next lower layer. Each layer adds a
header and, in addition, Ethernet also adds a trailer. In this way, the overhead for sending
application layer data increases with each layer.

0.13

Headers (and trailers) from a given layer are processed only by entities at the same layer. The
header of a transmitted TCP segment is processed only by the TCP protocol at the host which
receives the TCP segment. Each header of a protocol data unit is formatted into a number of
protocol specific fields. The format of the header is part of the specification of a protocol.
Header fields contain, among others, a source and a destination address, a checksum for error
control, sequence numbers, and the length of the payload. If the header has not a fixed size, then
the size of the header must be included as a field in the header.

At the receiver side, each layer strips off header fields from that layer and passes the payload to
a protocol at the next higher layer. Each layer must decide to which higher-layer protocol to
send the payload to. For example, an Ethernet device driver must assign the payload of a frame
to IP or to ARP. Likewise, IP must assign the payload of an IP datagram to UDP or TCP or
another protocol. This process of assigning the payload to a higher layer protocol is called
demultiplexing. Demultiplexing is done using a field in the header of a protocol data unit, which
identifies a higher layer protocol or an application process. Each protocol has such a
demultiplexing field.

HTTP

TCP

IP

Ethernet

User data

User dataHTTP Header

TCP Header

TCP HeaderIP Header

TCP HeaderIP Header
Ethernet
Header

Ethernet
Trailer

IP datagram

TCP segment

Ethernet frame

User dataHTTP Header

User dataHTTP Header

User dataHTTP Header

Figure 0.11. Encapsulation in the Internet.

Next we investigate encapsulation and demultiplexing by completely parsing an entire Ethernet
frame. Specifically, we use the Ethernet frame transmitted by Argon to Router137, which
contains the TCP connection requests for Neon. In hexadecimal notation the frame has a length
of 58 bytes and looks like this:

0.14

00e0 f923 a820 00a0 2471 e444 0800 4500 002c 9d08 4000 8006 8bff
808f 8990 808f 4715 065b 0050 0009 465b 0000 0000 6002 2000
598e 0000 0204 05b4

Here, each byte is represented by two hexadecimal digits. The data shown does not contain the
trailer of the Ethernet frame. In Figure 0.12 we show how these bytes are mapped to the
Ethernet header, IP header, and TCP header.

version
0x4

header length
0x5

Type of Service/TOS
0x00

total length (in bytes)
0x002c

Identification
0x9d08

flags
0102

fragment offset
00000000000002

cource IP address
128.143.137.144

destination IP address
128.143.71.21

time-to;ive
0x80

protocol
0x06

header checksum
0x8bff

source port number
162710

destination port number
8010

sequence number
0x0009465b

acknowledgement number
0x00000000

header length
0x6

unused
0000002

flags
0000102

window size
819210

TCP checksum
0x598e

urgent pointer
0x0000

maximum segment size
146010

option type
0x02

option length
0x04

destination address
00:e0:f9:23:a8:20

source address
0:a0:24:71:e4:44

type
0x0800

 4 bytes

CRC

Ethernet
header

(14 bytes)

IP Header
(20 bytes)

TCP Header
(24 bytes)

Ethernet
trailer

(4 bytes)

Figure 0.12. Encapsulation of a frame (0xN indicates a hexadecimal representation, N10 indicates a decimal representation,
and N2 indicates a binary representation of a number).

We now parse the bytes of the frame, just like the protocol stack at a host would parse the
frame. For orientation, we refer to Figure 0.12, which contains the final results of the processing
of the frame. The first 14 bytes represent the fixed-sized Ethernet header:

0.15

00e0 f923 a820 00a0 2471 e444 0800

The first six bytes of the header contain the destination MAC address for this frame, and the
next six bytes contain the source MAC address. We can verify that these are the addresses of
Router137 (00:e0:f9:23:a8:20) and Argon (00:a0:24:71:e4:44). The last two
bytes of the Ethernet header contain the demultiplexing field. The value 0x08004 indicates that
the payload of the frame following the Ethernet header is an IP datagram. Therefore, the
Ethernet device driver that receives the frame can pass the frame to IP for further processing.

The next 20 bytes are the IP header and are as follows:

4500 002c 9d08 4000 8006 8bff 808f 8990 808f 4715

The first four bits are the version number of the Internet Protocol. The value 0x4 indicates that
this datagram is formatted according to the IP version 4 (IPv4) specification. The next four bits
indicate the length of the IP header in multiples of four bytes. The value 0x5 states that the
length of the IP header is 5 x 4 = 20 bytes, which is the minimum size of an IP datagram. The
next byte specifies the type of service requested by this IP datagram. The value 0x00 states that
this frame does not have any specific service requirements. The next two bytes (0x002c)
contain the length of the IP datagram. At this point, IP knows that the IP datagram is 44 bytes
long. The following two bytes (0x9d08) are an identifier which is assigned when the IP
datagram is created. The next two bytes (0x4000) contain a 3-bit long flag field and a 13-bit
long so-called fragment offset. These fields are used when an IP datagram is split into multiple
pieces (fragments). If we use a binary representations for the two fields, then the flag field
evaluates to 0102,5 which means that the second flag is set. This is the Don’t Fragment flag,
with the interpretation that the current IP datagram should never be split into multiple
fragments. Accordingly, the value of the 13-bit long fragment offset is set to zero, or, in binary
representation 00000000000002. The next byte is the Time-to-Live (TTL) field, which
specifies the maximum number of routers that this IP datagram can cross. The value 0x80
states that the path of this IP datagram cannot exceed 128 routers. The next byte (0x06) is the
protocol field, which is the demultiplexing field in the IP header. This field identifies the
transport protocol that must process the payload following the IP header. The value 0x06
states that the payload of the IP datagram is a TCP segment. Following are a 2-byte long
checksum field (0x8bff). The remaining bytes of the IP header contain the IP addresses of the
source and destination. We can verify that 0x808f8990 corresponds to 128.143.137.144, the
IP address of Argon, and that 0x808f4715 corresponds to 128.143.71.21, the IP address of
Neon.

4 When a number is preceded by a “0x” then the number is given in hexadecimal notation. Otherwise, the number is given in

decimal notation.
5 The subscript in 0102 indicates that we use a binary representation.

0.16

The next 24 bytes are the header fields of the TCP segment:

065b 0050 0009 465b 0000 0000 6002 2000 598e 0000 0204 05b4

TCP parses the information in this header as follows. The first two bytes are the port numbers of
the source (0x065b) and the destination (0x0050). Thus, the port number of the TCP client at
Argon is 1627. This number was selected from a pool of available ports numbers when the TCP
client was started at Argon. The destination port number is 80. As we already know, this is the
well-known port number for HTTP servers. Note that the port numbers are the demultiplexing
fields for a TCP segment, since they identify the protocol or application program at the next-
higher layer. The next bytes are a 32-bit sequence number for data (0x0009465b) and a 32-bit
sequence number for acknowledgements (0x00000000). The following four bits (0x6)
provide the length of the TCP header in multiples of 4 bytes. Here, the TCP header is 6 x 4 = 24
bytes long. Since each TCP segment has a required size of 20 bytes, this value informs TCP
that there is a 4 byte long option header following the required header fields. The six bits
following the TCP header length are always set to zero: 0000002. This seems to be a waste,
but many protocols allocates certain bits in the header for “future use”, and then never use these
bits. The next six bits contain bit flags which contain important signaling information. The value
for the fourteenth byte of the TCP header (0x02) we can derive the binary representation of the
bit flags as 0000102. We see that only flag number five is set. This flag is the SYN flag,
which is set when a TCP client requests a TCP connection or when a TCP server responds to a
request for a TCP connection . The following two bytes (0x200) indicate the size of the
window for flow control purposes, and is set to 8192 bytes. The next two bytes of the header
(0x598e) are a checksum. The two bytes fo llowing the checksum contain a 2-byte long urgent
field. This field plays a role only when a certain flat, the URG flag, is set. In this segment, the
flag is not set, and the urgent field is set to zero. The last four bytes (0x020405b4) contain an
optional extension of the TCP header. Each TCP header option has three parts. The first byte
(0x02) specifies the type of option, the second byte (0x04) the length of the option in
number of bytes, and the remaining bytes contain the value of the option (0x05b4). The value
of the type field identifies the option as a maximum segment size option, which sets the size of
the largest TCP segment for the TCP connection. The value 0x05b4 sets the maximum size of
a TCP segment to 1460 bytes.

We have now completely parsed the Ethernet frame. The result is summarized in Figure 0.12. It
is interesting to note that there is no application data following the TCP header. The length of
the IP datagram was given as 44 bytes, which is fully used by the IP header (20 bytes) and the
TCP header (24 bytes). So, the entire frame consists only of header information.

Many exercises in the Internet Lab require the interpretation of protocol header information at
different protocol layers. However, rather than going through the tedious exercise of parsing
headers manually, the Internet Lab uses software tools that interpret the protocol headers and
present them in an easily readable format.

0.17

2.3. Different Views of a Network

In all layers of the TCP/IP protocol suite the notion of a “network” is an abstract representation
of the actual network environment. At the application and the transport layer, the network is
seen as a single IP network that connects TCP clients and servers, as shown in Figure 0.13.
Routers are not visible at this level of abstraction. The network abstraction does not distinguish
whether applications are running on the same or on different hosts. As Figure 0.13 illustrates,
the HTTP and TCP clients at Argon have the same view of the network when the HTTP server
and TCP server are running locally.

HTTP client

TCP client

Argon
128.143.137.144

HTTP
server

TCP server

Neon
128.143.71.21

IP Network

HTTP
server

TCP server

Figure 0.13 HTTP’s and TCP’s view of the “network”

Figure 0.14. IP’s view of a “network”

The network view at the IP layer is more detailed. Here the network is seen as an internetwork,
that is, a collection of networks, often called subnetworks or subnets, which are connected by
routers. In the web access example between Argon and Neon, the IP layer sees two networks
which are connected by a single router, as shown in Figure 0.14.

0.18

Argon
(128.143.137.144)

Router137
(128.143.137.1)

Ethernet Network

Figure 0.15. Ethernet’s view of a “network”.

At the data link layer, Ethernet views the network as a broadcast local area network, where
multiple devices are attached to a shared bus, and each device on the bus can send frames to
every other device on the bus. A single Ethernet network is also called an Ethernet segment . The
example from Section 1, had two Ethernet networks, and we show one of the networks in Figure
0.15. The graphical representation of an Etherne t segment as a shared link tries to indicate the
broadcast nature of an Ethernet segment, that is, each frame transmission can be received by all
devices on the same segment, and multiple overlapping transmissions result in a collision.

After reviewing the network abstractions used by various layers, we now follow the actual path
of the first IP datagram from Argon to Neon through the networking hardware. The networking
hardware, through which the IP datagram is traveling, and their approximate location is shown
in Figure 0.16. Argon and Neon are two PCs located on the same floor of the same building, the
“IP Building”, at Cerf University. The PCs are each connected to an Ethernet switch6 in the
basement of the IP Building. The Ethernet switches connect to a multiprotocol switch, which is
partly an Ethernet switch and partly an ATM switch. The multiprotocol switch has a 155 Mbps
fiber cable connection to an ATM switch. ATM (Asynchronous Transfer Mode) is a virtual-
circuit packet switching method, that can be found in corporate or campus networks, as well as
in wide-area networks that carry data, telephony, or video traffic.7 For our purposes, it is
sufficient to think of ATM as a data link layer protocol. ATM switches provide the backbone of
the Cerf University campus network. The IP router in Figure 0.4, which we called Router71 and
Router137, is located in the TCP Building, which is across campus from the IP Building. The
router is connected via an ATM link to the ATM switch in the TCP Building. The ATM
switches in the TCP Building and the IP Building are connected by a 622 Mbps fiber link.

6 Ethernet switches are the subject of Lab 5.

0.19

From Figure 0.16, it becomes very clear that none of the network abstractions of HTTP and
TCP (Figure 0.13), IP (Figure 0.14), and Ethernet (Figure 0.15) allow an accurate description of
the actual path of traffic between Argon and Neon. Even though the view of the IP layer
suggests otherwise, the traffic between Argon and Neon does not take the shortest path. We see
that all traffic between Argon and Neon leaves the building to reach the router in a different
building, just to return to the building where the traffic originated. Scenarios as shown in Figure
0.16, i.e., where the path of traffic that is visible at the IP layer is very different from the actual
flow of traffic, can be found very frequently.

100 Mbps
Ethernet

155 Mbps ATM

622 Mbps ATM

TCP
Building

IP
Building

155 Mbps ATM

argon neon

router71 /
router137 100 Mbps

Ethernet
100 Mbps
Ethernet

100 Mbps
Ethernet

Ethernet
switch

Ethernet
switch

Multiprotocol
switch

ATM
switch

ATM
switch

Figure 0.16. Network equipment.

0.20

3. The Internet

The term “Internet” refers to a global network of routers and hosts that run the TCP/IP protocol
suite, and use the same global IP address space. Figure 0.17 shows an attempt for a precise
definition of the Internet from 1995 by the United States Federal Networking Council.

RESOLUTION:

"The Federal Networking Council (FNC) agrees that the following language reflects our definition of the term "Internet".
"Internet" refers to the global information system that --

(i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent
extensions/follow-ons;

(ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its
subsequent extensions/follow-ons, and/or other IP-compatible protocols; and

(iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the
communications and related infrastructure described herein."

Figure 0.17. Definition of the term “Internet” by the United States Federal Networking Council (FNC) (Source:
http://www.ccic.gov/fnc/Internet_res.html).

3.1. A Brief History

The Internet started out in the late 1960s as a research network funded by the U.S. Department
of Defense (DoD) in an effort to build a communication network based on the principles of
packet switching. The network was initially referred to as the ARPANET (Advanced Research
Projects Agency network). By the early 1970s, the emergence of several commercial and non-
commercial packet-switching networks, and the development of various networking
technologies, such as packet radio and local area networks, created a need to interconnect
(“internetwork”) different types of networks through a common protocol architecture. The
development of TCP, which initially included both the functionality of TCP and IP, in the mid-
1970s met this need by providing a protocol that supports an internetwork or internet of
networks, that use a variety of different technologies and are owned by different organizations.
The term “the Internet” was used to refer to the set of all TCP/IP based internetworks with a
common address space. By the early 1980s, the TCP/IP protocol architecture had taken the
shape and form as described in Subsection 2.1, and had become the protocol standard for the
ARPANET. Throughout the 1980s, new TCP/IP based network infrastructures emerged that
connected universities and computing centers, and also interfaced to the existing ARPANET.
One of these networks, the NSFNET, which was established by the National Science
Foundation, became the successor of the ARPANET as the core infrastructure of the Internet. In
the late 1980s, many regional and international TCP/IP based networks connected to the
NSFNET, and created the foundation for today’s global Internet infrastructure. Today, the
Internet consists of many thousand, mostly commercial, interconnected internetworks, and
provides network services for more than 100 million hosts. The dramatic growth of the Internet

0.21

is illustrated in Figure 0.18 which shows the number of hosts connected to the Internet since the
early 1980s.

100

1000

10000

100000

1000000

10000000

100000000

1000000000

A
ug

-8
1

A
ug

-8
3

A
ug

-8
5

A
ug

-8
7

A
ug

-8
9

A
ug

-9
1

A
ug

-9
3

A
ug

-9
5

A
ug

-9
7

A
ug

-9
9

A
ug

-0
1

N
u

m
b

er
 o

f
H

o
st

s
o

n
 t

h
e

In
te

rn
et

Figure 0.18. Growth of the Internet since the 1980s. The data is based on the Internet Domain Survey by the Internet Software
Consortium

3.2. Infrastructure of the Internet

The infrastructure of the Internet consists of a federation of connected networks that are each
independently managed. As is shown in Figure 0.19, the networks are organized in a loose
hierarchy, where the attribute “loose” refers to the fact that the hierarchy is not required, but has
evolved to its present form. At the lowest layer of the hierarchy are private networks, either
campus or corporate networks, and local Internet service providers (ISPs). At the next level are
regional networks which have a coverage of one or several states. At the top level of the
hierarchy are backbone networks which span entire countries or even continents. ISPs, regional
networks, and backbone networks are also called, respectively, Tier-3, Tier-2, and Tier-1
network service providers (NSPs). In the United States there are less than 20 Tier-1 NSPs, less
than 100 Tier-2 NSPs, and several thousand Tier-3 ISPs.

Local ISPs, corporate networks, and ISPs are generally connected to one or more regional
network or, less often, to a backbone network. The location where an ISP or corporate network
obtains access to the Internet is called a Point-of-Presence (POP). The places where regional
networks and backbone networks interconnect together for the purpose of exchanging traffic are
called peering points. Peering can be done as public peering or private peering. Public peering
is done at dedicated locations, called Internet exchange points (IXPs), where a possibly very
large number of networks swap their traffic. In private peering, two networks establish a direct
link to each other.

0.22

local ISP

campus
network

corporate
network

IXP

Regional
Network

Regional
Network

local ISP

local ISP

IXP

IXP

Backbone Network

Backbone Network

Regional
Network

Regional
Network

Figure 0.19. The organization of the Internet infrastructure.

The internal topology and equipment of each network of the Internet is independently
maintained. The network topology of a local ISP may consist only of a small number of routers,
a few modem banks for dial- in customers, and an access link to a regional network. The internal
structure of a backbone network is significantly more complex, and is illustrated in Figure 0. 20.
Figure 0. 20(a) depicts the network topology. Each node of the network topology is a network
by itself, with a large set of networking equipment. This is indicated in Figure 0. 20(b). The
depicted devices are router or other pieces of network equipment, and each arrow represents an
outgoing network link. Only a small number of links connect to other nodes of the same
backbone network, and most links connect to other networks or to customers.

0.23

(a) Network Topology. The thickness of a
line indicates the link capacity.

Links to other
nodes of the
network

..
..

Dial-up and
leased links
to customers

..
.. Leased links

to customers

Peering points

Metropolitan
area networks...

.

C om3

C om3

C om3

C om3

Ba y N etwo rks

B ay N etw orks

Mode m Ba nk

S D

S D

Mode m Ba nk

Mode m Ba nk Mod em B ank

Mod em B ank

..
.. Leased links

to customers
...

. Leased links
to customers

(b) Networking equipment at a single node of a backbone network. Each arrow indicates an
outgoing link.

Figure 0. 20. Backbone network.

0.24

3.3. Administration and Standard Bodies of the Internet

There are many administrative bodies that oversee and manage the growth of the Internet. As
the Internet infrastructure itself, the administration of the Internet is based on cooperation and
characterized by a minimum of central control.

The Internet Society (ISOC) is an international nonprofit professional organization that
provides administrative support for the Internet. Founded in 1992, ISOC is the organizational
home for the standardization bodies of the Internet. The Internet Architecture Board (IAB) is
a technical advisory group of the Internet Society, and, among others, provides oversight of the
architecture for the protocols and the standardization process. The Internet Engineering Task
Force (IETF) is a forum that coordinates the development of new protocols and standards. The
IETF is organized into working groups that are each devoted to a specific topic or protocol.
Working groups document their work in reports, called Request For Comments (RFCs), which
also built the basis for Internet standards. All specification of the Internet protocols or issues
related to the TCP/IP protocol suite are published as RFCs. For example, IP is specified in RFC
791, TCP in RFC 793, ARP in RFC 826, and so forth. A small subset of published RFCs are put
on a track to become Internet standards. Internet standards are going through a set of stages,
from Internet draft to proposed standard, draft standard, and finally Internet standard. RFC’s
that are approved Internet standards are assigned an STD number. Currently, there are 61
designated Internet standards.

An important part of the administration of the Internet consists of the assignment and
administration of unique identifiers. These include domain names (e.g., tpcip- lab.net), IP
addresses (e.g., 128.143.71.21), well-known port numbers (e.g., port 80 for web servers),
protocol numbers for demultiplexing (e.g., 0x60 to indicate that an IP datagram contains a TCP
segment), and many others. From the early days of the ARPANET until the end of the 1980s,
the administration of identifiers was done by a single person (Jon Postel from the Information
Sciences Institute). The growth, increasingly international participation, and the privatization of
the Internet has since led to a structure where identifiers are managed by organizations with
broad international participation. Currently, a private non-profit organization, called Internet
Corporation for Assigned Names and Numbers (ICANN) assumes the responsibility for the
assignment of technical protocol parameters, allocation of the IP address space, management of
the domain name system, and others. The management of IP address and domain name
allocation is not done by ICANN itself, but by organizations that are authorized by ICANN.
ICANN has granted a small number of Regional Internet Registries (RIRs) the authority to
allocate IP addresses within certain geographical areas. Currently, there are three RIRs: APNIC
(Asia Pacific Network Information Centre) for the Asia Pacific region, RIPE NCC (Réseaux IP
Européens Network Coordination Centre) for Europe and surrounding regions, and ARIN
(American Registry for Internet Numbers) for the Americas and Sub-Sahara Africa. The
distribution of domain names is done by a large number of private organizations that are

0.25

accredited by ICANN. An important role of ICANN in the domain name assignment is the
establishment of new top-level domains (e.g., edu, us, jp).

0.26

4. Addresses and Numbers

In the networking example in Section 1, we encountered a set of different address schemes:
domain names (e.g., Argon.cerf.edu), IP addresses (e.g., 128.143.137.144) and port numbers
(e.g., 80), and MAC addresses (e.g., 00:a0:24:71:e4:44).

It is important to realize that domain names, IP addresses, and MAC addresses are not assigned
to hosts or routers, but to their network interfaces. Since most Internet users work on hosts with
only a single network interface, the distinction between a host and the network interface of a
host is often irrelevant. This is different when working with routers or hosts with more than one
network interface, so-called multi-homed hosts. In Section 1, the router in Figure 0.4 had two
domain names, two IP addresses, and two physical interfaces. Depending on the point of view
we referred to this router as “router137.cerf.edu” or as “router71.cerf.edu”, with the
interpretation, “the router that has a network interface with domain name r̀outer137.cerf.edu’”
or “the router that has a network interface with domain name `router71.cerf.edu’”.

We now present some of the details of the address schemes for MAC addresses, IP addresses
and port numbers. We discuss issues relating to domain names in Chapter 9.

4.1. Media Access Control (MAC) Addresses

MAC addresses are used to designate network interfaces at the data link layer. The MAC
addresses are used in the frame header to identify the source and destination of a frame. Not
every data link layer protocol requires the use of addresses. For example, when two routers are
connected by a point-to-point link, such as a high-speed serial link, there is no need to use
addresses in a frame to identify source or destination: every frame that is transmitted at one end
of a point-to-point link goes to the device at the other end of the link. So, the sender of a frame
on a point-to-point link knows where the frame is going to, and the receiver of a frame on a
point-to-point link knows that the sender of the frame is the device at the other end of the link.
Examples of data link layers for point-to-point links, which do not use addresses for network
interfaces, are PPP (Point-to-Point Protocol) and SLIP (Serial Line IP).

In a local area network, multiple network interface access a broadcast transmission medium,
which plays the role of a shared link. Each transmission on the shared link can be received by
all network interfaces attached to the shared link. As a result, each network interface must have
a unique address, and each transmitted frame must carry a destination address and a source
address. The destination address is needed so that a network interface that receives a frame on
the shared link can determine if it is the intended receiver of the frame. The source address in
the frame header is needed to identify the sender of a frame.

Most local area networks adopt an address scheme that was developed by the IEEE 802
committee, a standardization body that has defined many standards for local area networks,
including Ethernet, token ring, and wireless LANs. The address scheme is part of the MAC

0.27

layer that we introduced in Subsection 2.1. The addresses in this scheme are 48 bits long and are
known as MAC addresses, hardware addresses, or physical addresses. The convention for
writing MAC addresses uses a hexadecimal notation, where each byte is separated by a colon or
a dash. So, Neon’s MAC address (00:a0:24:71:e4:44 or 00-a0-24-71-e4-448) corresponds to
00000000 10100000 0100100 01110001 1110001 01000100.

The MAC address of a network interface card is permanent and is assigned when the card is
manufactured. Each network interface card receives a globally unique MAC address. When the
network interface card of a host is replaced, the host is reached via a different MAC address.
Since recently, some network interface cards provide the capability to modify the MAC address
of a network interface card. However, changing the MAC address of a network interface card
may result in address duplication. Therefore, when the MAC address is modified it is important
to ensure that the assigned MAC address is unique on the local network.

The assignment of the MAC address space is administered by the IEEE. Each company that
manufactures network interface cards obtains address blocks from the IEEE in the form of a
24-bit prefix. The manufacturer uses this prefix for the first 24 bits of the MAC addresses of
its network interface cards. The last 24 bits are assigned by the manufacturer, who must
ensure that the these bits are assigned without duplication. Once the address block is depleted,
the manufacturer can request a new address block from the IEEE. Note, however, that one
24-bit prefix lasts for 224 ≈ 16.7 million interface cards. An interesting consequence of this
assignment scheme is that the MAC address can be used to identify the manufacturer of an
Ethernet card. For the MAC addresses in Section 1, we can determine that the network
interface card of Argon and Neon were manufactured by the 3COM Corporation, since the
prefixes 00:a0:24 and 00:20:af are assigned to the 3COM Corporation, and that the Ethernet
interface of the router with MAC address 00:e0:f9:23:a8:20 was manufactured by Cisco
Systems.

Other than identifying the manufacturer, the address space of MAC addresses is flat, meaning
that MAC addresses do not encode any hierarchy or other structure that can be exploited for
the delivery of frames. There are a few special addresses. The address ff:ff:ff:ff:ff:ff, that is,
the address with all 48 bits set to ‘1’, is designated as broadcast address. A frame where the
destination address is the broadcast address is sent to all network devices on the local area
network. For example, the Ethernet frames that carry the ARP request packets shown in
Figure 0.5 and Figure 0.6 have the destination address set to the broadcast address. Addresses
where the first 24 bits are set to 01:00:5e are multicast MAC addresses. Multicast addresses
are intended for group communication, when a single sender wants to send a frame to a group
of several, but not all, hosts, and are discussed in detail in Chapter 7.

8 Leading zeros in a byte a dropped, e.g., 0a is written as a.

0.28

4.2. Port numbers

At the transport layer, TCP and UDP use 16-bit port numbers to identify an application process,
which is either an application-layer protocol or an application program. Each TCP segment or
UDP datagram carries the port number of the source and the destination in the packet header.
The IP address, the transport protocol number (0x60 for TCP, 0x11 for UDP), and the port
number of a packet uniquely identify a process on the Internet. When a packet is received by the
transport layer, the transport protocol number and the port number provide the demultiplexing
information to assign the data to the correct process. Since the number of the transport protocol
is used in the demultiplexing decision, a host can have ports for TCP and ports for UDP with
the same number. As an example, a UDP port 80 and a TCP port 80 are separate ports, which
that can be bound different application processes.

Most network services and application programs on the Internet have a client-server interaction.
When allocating port numbers the server programs of the client-server applications are assigned
to well-known port number, meaning that all hosts on the Internet have default port numbers for
their server programs. For example, the well-known port number for an HTTP server is port 80,
and the well-known port numbers of other applications are port 21 for File Transfer Protocol
(FTP) servers, port 25 for the mail servers that run the Simple Mail Transfer Protocol (SMTP),
and port 23 for Telnet servers. All well known port numbers are in the range from 0 to 1023.
The assignment of well-known port numbers to the server programs of application-layer
protocols is generally stored in a file on a host. The assignment can be found in RFC 1700 (STD
2). The advantage of using well-known port numbers is that client programs of application layer
protocols which need to access a server program, can obtain the port number of the server
simply via a local lookup.

The assignment of port numbers 1024 and higher is not regulated. Port numbers in this range are
used by client programs of network services. Generally, client programs allocate a port number
only for a short period of time, and release the port number as soon as the client program has
completed its task. Because of the temporary allocation, port numbers 1024 and above are called
ephemeral port numbers.

When developing software for application programs and application layer protocols for the
Internet, programmers generally use the (Berkeley or BSD) socket application programming
interface. A socket provides to the application programmer an abstraction that is similar to that
of a file. An application program can open a socket, and then read from and write to a socket,
and, once a task is completed, close a socket. By associating (binding) a socket to a port
number, an application program gains access to the Internet address space.

4.3. IP Addresses

An IP address is an identifier for a network interface at the network layer. When the network
interface is connected to the Internet, the IP address must be globally unique within the address

0.29

space of the Internet. This means that no two network interfaces on the Internet can have the
same IP address. In Lab 8 we will see that private networks (intranets) that interface with the
Internet, but have hosts that are not directly connected to the Internet may need not have unique
addresses. In Lab 9, we will learn about a method for dynamic assignment of IP addresses with
a protocol called DHCP.

 Throughout this book, we will we use the IP addresses from the Internet Protocol Version 4
(IPv4), which is the current version of the Internet Protocol. IP addresses in IPv4 are 32 bits
long and are written in a so-called dotted decimal notation. In this notation, the value of each
byte is represented as a decimal number, and the four numbers are separated by dots. So,
address 128.143.137.144 corresponds to 10000000 10001111 10001001 10010000. The
conversion from the binary to the dotted decimal notation is illustrated in Figure 0.21.

10001111 10000000 10001001 10010000
= 128 = 143 = 137 = 144

128.143.137.144

1
st
 Byte

2
nd

 Byte

3
rd
 Byte

4

th
 Byte

Figure 0.21. Derivation of the dotted decimal notation of an IP address

Each IP address consists of a network number which is followed by a host number.9 The
network number is also called the network prefix or, simply, the prefix. An organization obtains
a network prefix either from its network service provider or directly from a Regional Internet
Registrations (RIR). Once assigned a network prefix, the organization is free to assign host
numbers to the network interfaces of routers and hosts on its network. The length of the
network prefix is specified by a bitmask, called the netmask , which has a ‘1’ in all bit positions
of the prefix. In the so-called CIDR notation, the length of the network prefix is appended to
the IP address, where IP address and the prefix length are separated by a ‘/’ (slash). For
example, the network of the Cerf University is assigned the 16-bit long network prefix 128.143.
All hosts and routers on the Cerf University network have IP addresses in the range 128.143.0.0
– 128.143.255.255. The resulting netmask is 255.255.0.0. The CIDR notation for an IP address
is 128.143.137.144/16, where /16 indicates the length of the prefix.

The separation of the address into a network number and a host number results in a two-layer
hierarchy for IP addresses. When a router processes an IP address outside the scope of its

9 Using “interface number” instead of “host number” would be more appropriate, but is not commonly used terminology. Note

that a multi-homed host has one host number for each of its network interfaces.

0.30

network number, the router only looks at the network number and does not look at all at the host
number.

Certain IP addresses have a special interpretation and cannot be used for network interfaces. All
IP addresses where the host number is set to zero do not specify an interface but specify the
address of a network. For example, the address 128.143.0.0/16 is the address of the Cerf
University network. Many systems reserve address 0.0.0.0 to designate the default route in a
routing table. An IP address where the host number has ones in all bit positions is a broadcast
address. An IP datagram where the destination address is a broadcast is delivered to all hosts on
the network. For example, the IP address 128.143.255.255 is the broadcast address for all hosts
on the Cerf University network. The IP address 255.255.255.255 is called limited broadcast
address, which tries to reach all hosts on the same local network. IP datagrams with this
destination address are not forwarded by routers. By convention, the default router or gateway
of a subnet has the host number set to one. The IP addresses of the router in Section 1,
128.143.137.1 and 128.143.71.1, followed this convention. Addresses with prefix 127.0.0.0/8
are reserved for loopback interfaces. The address of the loopback interface is used when the
sender and receiver of an IP datagram reside on the same system, e.g., a web client accesses a
web server on the same host. On most hosts, IP address 127.0.0.1 is reserved for the loopback
address and is associated with the name localhost. When a host sends a datagram to IP address
127.0.0.1, the destination of the datagram is the local host, and the datagram is not transmitted
on the network.

Then there are some IP addresses that are reserved for testing or experimental purposes. These
are the addresses in the ranges 10.0.0.0 – 10.255.255.255, 172.16.0.0 – 172.31.255.255, and
192.168.0.0 – 192.168.255.255. When a system in the public Internet sees an IP datagram with
an experimental IP address, the datagram is dropped. Experimental address ranges are often
used for hosts that are not directly connected to the public Internet, e.g., hosts in testbed
networks or private networks. We use experimental IP addresses in the Internet Lab. Therefore,
if, for some reason, an IP datagram from the Internet Lab should leak to the public Internet, the
datagram is designated as a packet that should be dropped and does not interfere with regular
Internet traffic.

4.3.1. Subnetting

Since the networks of some organizations grow large, network operators can decide to subdivide
the network into smaller subnetworks and assign each subnetwork its own network address.
This process is known as subnetting. Subnetting is done by allocating some of the leading bits
of the host number to indicate a subnet number. With subnetting, the network prefix and the
subnet number make up an extended network prefix. The extended prefix can be expressed in
terms of a subnetmask or, using CIDR notation, by adding the length of the extended
subnetmask after the IP address. For example, for Argon, the first byte of the host number (the

0.31

third byte of the IP address) is used to denote the subnet number10. With this, 128.143.0.0/16 is
the IP address of the network, 128.143.137.0/24 is the IP address of the subnet,
128.143.137.144/24 is the IP address of the host, and 255.255.255.0 is the subnetmask of the
host (see Figure 0.22).

128.143 137.144

network prefix host number

128.143 144

network prefix host numbersubnet
number

137

extended network prefix

1 0 0 0 0 0 0 0 0

subnetmask

Figure 0.22. Network prefix and extended network prefix.

When a host or router holds an IP datagram it compares, for each of its network interfaces, its
own IP address and the destination IP address. If the addresses match on the bits that correspond
to the extended network prefix, the host or router will attempt to deliver the IP datagram
directly. Otherwise, it will pass the IP datagram to another router.

The use of subnetting and the length of the subnet number in a network are up to the
administrator of a network. The subnet structure is not visible outside the network where it is
used. Hosts and routers do not know if and how subnetting is used on other networks. It is even
possible to have different subnetmasks on the same network.

In Figure 0.23, Figure 0.24, and Figure 0.25 we illustrate different uses of subnetting Figure
0.23 shows a network without subnetting. Here the subnetmask of each host is identical to the
network prefix. All hosts of the network believe to be part of the same subnetwork with IP
address 128.143.0.0/16. In Figure 0.24, the hosts have an 8-bit long subnet number, resulting in

10 In the real network, Argon does not use subnetting, and the (sub)netmask of Argon is 255.255.0.0. We will revisit our example

with the correct subnetmask in a later chapter.

0.32

a 24-bit long extended network prefix or, equivalently, a subnetmask with value 255.255.255.0.
Based on the IP addresses the hosts in the figure belong to subnet 128.143.137.0/24 or
128.143.71.0/24. Figure 0.25 shows an example where hosts on the same network have
different subnetmasks. Starting from the left, the first two hosts have a 26-bit extended network
prefix, the third host has a 24-bit extended prefix, and the fourth host has a 16-bit extended
prefix. As a result, all hosts are on different subnets. Interestingly, the host with IP address
128.143.137.201 believes to be on the same subnet (with IP address 128.143.0.0/16) as all other
hosts. However, based on their subnetmasks, any of the other hosts determines that
128.143.137.201 is not on its local subnet.

128.143.70.0/16

128.143.137.32/16
subnetmask: 255.255.0.0

128.143.71.21/16
subnetmask: 255.255.0.0

128.143.137.144/16
subnetmask: 255.255.0.0

128.143.71.201/16
subnetmask: 255.255.0.0

Figure 0.23. Network without subnetting.

128.143.0.0/16

128.143.137.32/24
subnetmask: 255.255.255.0

128.143.71.21/24
subnetmask: 255.255.255.0

128.143.137.144/24
subnetmask: 255.255.255.0

128.143.71.201/24
subnetmask: 255.255.255.0

128.143.137.0/24
Subnet

128.143.71.0/24
Subnet

Figure 0.24. Network with subnetting.

0.33

128.143.0.0/16

128.143.137.32/26
subnetmask: 255.255.255.192

128.143.71.21/24
subnetmask: 255.255.255.0

128.143.137.144/26
subnetmask: 255.255.255.192

128.143.71.201/16
subnetmask: 255.255.0.0

128.143.71.0/24
Subnet

128.143.137.128/26
Subnet

128.143.137.0/26
Subnet

Figure 0.25. Network with different subnetmasks.

Subnetting leads to a three-layer hierarchy of IP addresses. The first level is the network
number, the second level is the subnet number, and the third level is the host number. The
delivery of an IP datagram follows the levels of this hierarchy. First, an IP datagram is delivered
to the destination network. Once it arrives at the correct network, the datagram is delivered to
the correct subnet, and then to the host on the subnetwork.

4.3.2. Classful addresses

In IPv4, the IP address space was partitioned into a five address classes: Class A, B, C, and D.
IP addresses in Classes A, B and C are used for network interfaces.Class A addresses have the
leftmost bit set to “0”. The network prefix of a Class A address is 8 bits long, resulting in a total
of 27 different Class A networks. There are 24 bits available for the host number, resulting in up
to 224-2 ≈ 16.7 million hosts for each Class A network.11 Each Class B address has the two
leftmost bits set to “10”. Class B addresses have a network prefix that is 16 bits long. As result,
the maximum number of Class B networks is 214=16,384. The maximum number of hosts in a
Class B network is 216-2≈ 64,000. In Class C addresses, the three leftmost bits are set to
“110”. Here, the network prefix has a length of 24 bits. The maximum number of Class C
networks is approximately 2 million, and the number of hosts on a Class C network is limited
by 28-2 = 254.

The motivation for the different classes is that a network administrator who wants to set up a
new network requests a network prefix that matches the size of the network. Class A network
addresses are intended for very large networks, class B addresses for networks that have a few
thousand hosts, and Class C addresses are to be used for small networks. Note that classful
addresses encode the class membership in the first bits of the IP address. Therefore, a router or
host can derive the length of the network prefix by looking at the first bits of the IP address.

11 This assumes that no subnetting is used and discounts the addresses where all bits of the host number are set to zero (network

address) and all bits of the host number are set to one (broadcast address).

0.34

Class D and Class E addresses are not used to identify network interfaces. Class D addresses are
reserved for multicast addresses, which are used to specify groups of hosts. A Class D address
has the four leftmost bits set to “1110”. The details of Class D addresses will be discussed in
Chapter 7. Class E addresses start with prefix “11110”. This address class was reserved for
future use, but has never been defined. All address classes are illustrated in Figure 0.26. Using
the dotted decimal notation the address ranges of the IP address classes are as follows:

Class A: 0.0.0.0 – 127.255.255.255
Class B: 128.0.0.0 – 191.255.255.255
Class C: 192.0.0.0 – 223.255.255.255
Class D: 224.0.0.0 – 239.255.255.255
Class E: 240.0.0.0 – 247.255.255.255

0.35

Class D multicast address11 1
bit # 0 1 2 313

0
4

Class E (reserved for future use)11 1
bit # 0 1 2 313

1
4

0
5

Class C network host11 0

Network Prefix
24 bits

Host Number
8 bits

bit # 0 1 23 242 313

Class B 1 network host
bit # 0 1 15 162

Network Prefix
16 bits

Host Number
16 bits

0
31

Class A 0 network host

Network Prefix
8 bits

bit # 0 1 7 8

Host Number
24 bits

31

Figure 0.26. IP Address Classes. .

Classful addressing has a few inherent disadvantages. One disadvantage is a lack of flexibility
when assigning network addresses. For example, when an organization wants to build a network
for up to 10,000 hosts, the organization can either request a Class B address with more than
64,000 addresses or 40 Class C addresses which yields 10160 addresses. The former utilizes
only a small fraction of the assigned portion of the address space, thus wasting a lot of IP
addresses. The latter choice results in a large number of network addresses that need to be
maintained by the network administrator. Ideally, the organization should allocate a network
number with a network prefix with 14 bits, resulting in 214-2 = 16382 addresses.

The second problem is that the assignment of Class A, B, and C network addresses results in a
flat address space and does not permit an aggregation of routing table entries. As a result, an IP
router must keep one routing table entry for each network address. Since the number of

0.36

networks, especially, Class C networks can be large, searching routing tables may become a
performance bottleneck in a router.

In the early 1990s, the limitations of classful addressing became so apparent that the classful
address scheme with fixed network prefixes was abandoned, and replaced with a scheme with
flexible network prefixes. This scheme was called Classless Interdomain Routing (CIDR,
pronounced “Cider”).

4.3.3. Classless Inter Domain Routing (CIDR)

When the fixed network prefixes and the flat address space of classful addressing seemed to
limit the growth of the Internet, a new scheme for assigning IPv4 addresses was adopted which
increased the efficiency of IP address assignments by using flexible network prefixes and
reduced the routing table size via aggregation of routing table entries.

CIDR is a new interpretation of the IP address space. CIDR eliminates fixed-length prefixes,
and, instead, allows network prefixes to have arbitrary lengths. With CIDR, the size of the
network prefix must be provided with an IP address, since the length of the network prefix can
no longer be inferred from the first bits of the IP address. Therefore, for each IP address, one
must provide the length of the network prefix. This motivates the CIDR notation, where the
network prefix length is added after a “/” that follows the IP address, e.g., as in
128.143.137.144/16. When subnetting is used, one writes the length of the extended network
prefix. The CIDR notation allows to drop trailing zeros for network addresses, e.g.,
128.143.0.0/16 can be written as 128.143/16.

With the variable size of the network prefix, IP address allocations for networks can be done
more efficiently. Each prefix length corresponds to a block of addresses. For example, the prefix
10.0.112.0/20 describes an address block in the range 10.0.112.0–10.0.127.255. When an
organization asks for a new network address it requests a prefix of appropriate length. For
example, an organization that requires IP addresses for1000 hosts can request a /22 prefix. With
a prefix of 22, 32 –22 = 10 bits are left for the host number, resulting in 210 –2 = 1022 IP
addresses.

The introduction of CIDR enables route aggregation in routing table entries. Essentially a
routing table has two columns. The first column contains the destination IP address of a network
and the second column contains the name of a network interface. With classful IP addresses,
routing table entries are Class A, Class B or Class C addresses. A row with entry (128.143.0.0,
interface #2) is interpreted as follows: When the router receives an IP datagram where the
destination address has the (Class B) IP address 128.143.0.0/16, the router forwards this IP
datagram to interface #2. With this scheme, a router must have one routing table entry for each
network address. CIDR allows routing table entries to have a network prefix of any length. For
example, a routing table entry of the form (128.0.0.0/8, interface #2) is interpreted, as follows.
When the router receives an IP datagram where the destination address where the first 8 bits
have value 128, the router forwards this IP datagram to interface #2. Therefore, a single routing

0.37

table can contain routing information for many network addresses. This is called route
aggregation. An issue with route aggregation is that a routing table can have multiple matches
for the same destination. As an example, the following table has three matches for address
128.143.137.144:

Prefix Interface

128.0.0.0/4 interface #5

128.128.0.0/9 interface #2

128.143.128.0/17 interface #1

With route aggregation in CIDR, one selects the routing table entry that matches the prefix of
the destination address for the most number of bits. This is called longest prefix matching. In the
above table, longest prefix matching selects the third row in the routing table, since the prefix
128.143.137.0/24 matches the prefix of 128.143.137.144 for 17 bits, as opposed to 4 and 9 bits,
respectively, for the other entries.

Route aggregation is effective when the assignment of IP addresses is done in a hierarchical
fashion. In a hierarchical address allocation, a backbone ISP obtains large block of IP addresses
space from one of the RIRs, and then reallocate portions of this address blocks to its customers.
If the customers are themselves network service providers, they divide their address blocks
further and assign pieces of the blocks to their customers, and so on.

206.0.64.0/18
209.88.232.0/21

Rest of
the Internet

ISP X
Company A:
 206.0.68.0/22

ISP Y :
 209.88.237.0/24

Company B:
 209.88.237.192/26

Company C:
 209.88.237.0/26

Figure 0.27. Address Space Allocation with CIDR.

In Figure 0.27, we show an example, where ISP X owns two IP address blocks with prefixes
206.0.64.0/18 and 209.88.232.0/21. The prefixes correspond to the IP address ranges
206.0.64.0 – 206.0.127.255 and 209.88.232.0 – 209.88.239.0. ISP X has allocated a /22 prefix
(206.0.68.0/22) to Company A and a /24 prefix (209.88.237.0/24) to ISP Y. ISP Y, in turn, has
given part of its allocated address space to Company B (209.88.237.192/26) and Company C
(209.88.237.0/26).

0.38

 In this example, the routers in the rest of the Internet (indicated by the cloud on the left of
Figure 0.27), only require to have routing table entries for the prefixes 206.0.64.0/18, and
209.88.232.0/21 for traffic with a destination in ISP X or any of ISP X’s customers. The routers
need not know anything about the network addresses of ISP X’s customers. When ISP X
receives a packet which matches prefix 209.88.237.0/24, it forwards the packet to ISP Y. ISP X
does not need to have routing table entries for the networks of Company B and Company C.

A disadvantage of route aggregation and the hierarchical organization of the IP address space is
that network prefixes are tied to the organizations from which the prefixes are obtained. For
example, when Company B decides that it wants to change its ISP, from ISP Y to ISP X, it
cannot keep its IP addresses. Instead, Company B must return the allocated address block to ISP
Y, request a new address block from ISP X, and modify the IP addresses on all systems in
Company B.

4.3.4. The future of IP addresses

In principle, with 32-bit addresses, the Internet can have up to of 232 ≈ 4 billion IP addresses.
However, since IP addresses are not assigned individually to hosts, but allocated in blocks to
network service providers and organizations, which may, or may not, use all addresses of an
allocated block, the Internet will eventually outgrow the available address space. Recognizing
that the address space of IPv4 will eventually be depleted, the IETF has standardized a new
version of the IP protocol, called IP Version 6 (IPv6). The length of an IP address in IPv6 is 128
bits, four times as large as an IPv4 address. With 128 bits it is not likely that IPv6 will ever out
of IP addresses anytime soon. The address space is large enough to permit in the order of 1024
IP addresses per square inch on the surface of the Earth. 12

5. Application Layer Protocols

The first generation of Internet applications from the late 1960s and early 1970s addressed the
need to transfer files between computers, to have remote access to computing resources, and to
support communication between users at different hosts. The applications, which met these
needs: FTP, Telnet, and Email, were the predominant applications in the first decades of the
Internet. The emergence of the World Wide Web in the early 1990s quickly made web browsing
the most popular Internet application. Recently, applications for streaming audio and video,
telephony over the Internet, and peer-to-peer file sharing have again changed the landscape of
Internet applications.

This section discusses knowledge about applications interact with the Internet and how
applications take advantage of the Internet to provide network services to end users.

12 This is based on the Earth’s surface, including land and ocean areas, having a size of approximately 196,935,000 square miles.

0.39

Many Internet applications are built on top of application-layer protocols that have been
standardized by the IETF. In this section we briefly describe some of the most popular
application layer protocols of the Internet, where we concentrate on the application protocols
used in the Internet Lab. Since this book and the Internet Lab focus on the internal operations of
the Internet protocols, and, less so, how applications use the Internet, we do not cover every
detail of the applications and application- layer protocols. Rather, we provide an overview of the
design of application-layer protocols, focusing on the interactions between application programs
and application layer-protocols, and between application-layer protocols and transport-layer
protocols. In pursuing this goal, we discover several similarities between different application
layer protocols.

5.1. File Transfer

The File Transfer Protocol (FTP) for copying files between computer systems is one of the
oldest application- layer protocols and was created before the TCP/IP protocol suite. FTP is a
client-server protocol where an FTP client accesses an FTP server. The FTP client authenticates
itself with a user name and a password to establish an FTP session. A successful authentication
results in the establishment of an FTP session, where the FTP client can download (“get”) and
upload (“put”) files and file lists. When transferring files, FTP respects the ownership and
access privileges of files. Most hosts have a utility program, generally also called FTP, which
provides an interactive command line interface to run an FTP session. This utility program is
used throughout all parts of the Internet Lab. FTP clients can also be integrated in other
applications, such as web browsers. Anonymous FTP is a special form of file transfer service
that allows public access to files at an FTP server. An FTP client can establish an anonymous
FTP session by supplying the user name “anonymous” and an arbitrary password (The FTP
server usually requests to supply an email address as password).

TCP client

Port 1931

Control connection
(authentication,

commands from client,
responses from server)

FTP serverFTP client

TCP server

Port 1932

TCP server

Port 21

TCP client

Port 20

Data connection
(files, file lists)

Data connection is re-established
after each file or file list

Figure 0.28. TCP connections in an FTP session.

FTP employs TCP as its transport protocol, thereby ensuring a reliable transfer of transmitted
data. Two TCP connections are established for each FTP session, called control connection and
data connection. The control connection is used for commands from the client and messages

0.40

from the server. The data connection is used for the transport of files. As illustrated in Figure
0.28, an FTP server uses the well known TCP port 21 for the control connection, and the well-
known TCP port 20 for the data connection, and an FTP client selects available ephemeral port
numbers. The control connection is established at the beginning of the FTP session and stays up
for the entire lifetime of the session. The control connection is used by the FTP client for
authentication, for setting various session parameters, and for commands to download or upload
files. The data connection is opened and closed for each transfer of a file or file. As soon as a
file or a file list has been transferred, the data connection is closed. If there is another file
transfer, the data connection is re-opened. By default, the data connection is established upon
request by the FTP server. The FTP client starts a TCP server that waits for a connection on an
ephemeral port, and sends the port number of this port on the control connection to the FTP
server. After the FTP server receives the port, it can request a data connection to the FTP client.

A security concern with FTP is that the user name and the password submitted by the FTP client
on the control connection at the beginning of an FTP session are not encrypted. Therefore,
anyone with the ability to capture traffic from an FTP client can obtain the user name and
password used by an FTP client.

In Figure 0.29 we show the interaction between an FTP client and an FTP server on the TCP
control connection. The FTP client sends commands to the FTP server, and the FTP server
responds with a three-digit response code and an explaining text message. The commands from
the FTP client as well as the responses from the FTP server are transmitted as ASCII
characters.13 The end of a client command and the end of a server response is represented by an
end-of-line sequence, which consists of the ASCII special characters Carriage Return (ASCII
10) followed by Line Feed (ASCII 13). When the TCP connection to TCP port 21 of the FTP
server is established, the FTP server sends a message that it is ready to interact on a new FTP
session. Then, the user supplies a user name and a password. If the authentication is successful,
the user sends the IP address and port number of its ephemeral port for the data connection. The
IP address and port number is sent in dotted-decimal notation, where the first four numbers
specify the IP address and the last two numbers specify the port number. The string
“192,168,123,175,7,140” in Figure 0.29 informs the FTP server that the client has a TCP server
running on IP address 192.168.123.175 at TCP port 1932 (=7*256+140). The FTP server uses
the IP address and port number for setting up the data connection. The command “RETR
myfile” is a request by the client to copy the file “myfile” from the FTP server to the FTP client.
By default, files are transmitted as text files using ASCII characters. However, the FTP client
can change this default so that files are transmitted bit-by-bit without any interpretation. When
the file transfer has been completed, the FTP server sends a message to the FTP client. At this

13 ASCII (American Standard Code for Information Interchange) is an encoding format for textual data, which

represents an alphanumeric character or special character by seven bits. Application-layer protocols transmit each
ASCII character in a byte (octet) with the most significant bit set to zero. We provide a table which explains the
ASCII code at the end of this chapter.

0.41

time, the FTP client can download or upload another files, or end the FTP sessions by issuing
the command “Quit”.

Server: 220 ftp.local-lab.net FTP server (Version wu-2.6.1-16) ready.
Client: USER student
Server: 331 Password required for root.
Client: PASS MySeCreT
Server: 230 User root logged in.
Client: PORT 192,168,123,175,7,140
Server: 200 PORT command successful.
Client: RETR myfile
Server: 150 Opening ASCII mode data connection for myfile (61 bytes).
 // transmission of myfile on TCP data connection (66 bytes)
Server: 226 Transfer complete.
Client: QUIT
Server: 221-You have transferred 66 bytes in 1 files.
Server: 221-Total traffic for this session was 400 bytes in 1 transfers.

Figure 0.29. Exchange of FTP control messages between FTP client and FTP server.

The Trivial File Transfer Protocol (TFTP) is a minimal protocol for transferring files without
authentication and no separation of control information and data as in FTP. TFTP is frequently
used by devices without permanent storage for copying an initial memory image (bootstrap)
from a remote server when the devices are powered on. Due to the lack of any security features,
the use of TFTP is generally restricted.

TFTP uses the unreliable transport protocol UDP for data transport. Each TFTP message is
carried in a separate UDP datagram. The first two bytes of a TFTP message specify the type of
message, which can be a request to download a file, request to upload a file, a data message, or
an acknowledgement or error message. A TFTP session is initiated when a TFTP client sends a
request to upload or download a file from an ephemeral UDP port to the (well-known) UDP
port 69 of an TFTP server. When the request is received the TFTP server picks an ephemeral
UDP port of its own and uses this port to communicate with the TFTP client. Thus, both client
and server communicate using ephemeral ports.

0.42

UDP

Port 3214

Request to send
or receive a file

TFTP serverTFTP client

UDP

Port 69

UDP

Port 4012

Control and Data

Figure 0.30. TFTP session.

Since UDP does not recover lost or corrupted data, TFTP is responsible for maintaining the
integrity of the data exchange. TFTP transfers data in blocks of 512 bytes. Each block is
assigned a 2 byte long sequence number and is transmitted in a separate UDP datagram. A block
must be acknowledged before the next block can be sent. When an acknowledgment is not
received before a timer expires, the block is retransmitted. When the receiver receives a block
that is less than 512 bytes long, it assumes that the end of file has been reached.

5.2. Remote Login

Telnet is a remote login protocol for executing commands on a remote host. The Telnet protocol
runs in a client-server mode and uses the TCP protocol for data transmission. A client initiates a
Telnet session by contacting a Telnet server at a remote host. Similar to FTP, the origins of
Telnet go back to the beginning of the ARPANET in the late 1960s. Recently, the use of Telnet
in public networks has been discouraged since Telnet does not offer good protection against
third parties that can observe (“snoop”) traffic between a Telnet client and a Telnet server.

The mode of operation in a Telnet session is illustrated in Figure 0.31. At the Telnet client, a
character that is typed on the keyboard is not displayed on the monitor, but, instead, is encoded
as an ASCII character and transmitted to a remote Telnet server. At the server, the ASCII
character is interpreted as if a user had typed the character on the keyboard of the remote
machine. If the keystroke results in any output, this output is encoded as (ASCII) text and sent
to the Telnet client, which displays it on its monitor. The output can be just the (echo of the)
typed character or it can be the output of a command that was executed at the remote Telnet
server.

0.43

1.
send character

2.
interpret

character

3.
send echo of character

and/or output

Host with
Telnet client

Host with
Telnet server

Figure 0.31. Client/server interaction in a Telnet session.

Telnet uses a single TCP connection for communications. The Telnet server uses the well-
known TCP port 23 and the Telnet client uses an ephemeral TCP port. After establishing the
TCP connection, the Telnet client and server negotiate a set of parameters for the Telnet session,
including terminal type, line speed, if typed characters should be echoed to the client or not, and
so on. Unless a Telnet session is explicitly configured not to do so, Telnet client sends one TCP
segment for each typed character.

Telnet provides some independence from the differences of hardware and software at hosts by
mapping input and output to a virtual device, called Network Virtual Terminal (NVT) or
pseudoterminal. The Telnet client and Telnet server map the input from a keyboard and the
output to a monitor to the ASCII character set. Thus, before a character is sent over the network
it is encoded as ASCII character. Also, when an ASCII character is received on the TCP
connection, the receiving host interprets the character and translates it into its local character
format.

Rlogin is an alternative remote login application program for hosts that run the Unix operating
system. Rlogin takes advantage of the fact that both the client and server run a similar operating
system, and, for this reason, is simpler than Telnet. Rsh is an application program for the
execution of a single command on a remote Unix host. There is also an application program for
file transfers between Unix hosts, called rcp. However, this group of applications has poor
security features, and is, therefore, often disabled.

The Secure Shell suite of protocols provides application layer services for remote login and file
transfer services, similar to FTP, Telnet, rlogin, rsh, and rcp, but ensures secure encrypted
communications between untrusted hosts. All components of Secure Shell provide
authentication, confidentiality, and integrity of data, using a variety of encryption and
authentication algorithms, and protect against common attacks on the security or integrity of
communications between hosts. On the Internet, Secure Shell is run as a client-server protocol
over a TCP connection and Secure Shell servers use the well-known TCP port 22.

0.44

5.3. Electronic Mail

Electronic Mail (email) is the primary Internet service for exchanging messages between users
at different hosts on the Internet. The exchange of email messages is asynchronous, meaning
that the transmission and retrieval of an email message can occur at different times.

Mail server

SMTP
server

queue of
messages

User agent

User mailbox User agent

User mailboxSMTP

Host A Host B

queue of
messages

SMTP
client

SMTP
client

SMTP
server

Mail server

SMTPTCP port 25

TCP port 1925

TCP port 2113

TCP port 25

Figure 0.32. Components of an Email system.

The exchange of an email on the Internet is illustrated in Figure 0.32. A user on a host prepares
an email on a mail preparation program, called a user agent. Examples of user agents on Unix
operating systems are mail, xmail, elm, or pine 14. Email messages are written in plain text and
have the familiar structure shown in Figure 0.33, and users can add non-text files to an email
message.

From: student@local-lab.net
To: instructor@remote-lab.net
Subject: Internet Lab
The dog ate my homework.

Figure 0.33. Email message.

The user agent passes the email to a mail server, where the message is queued for transmission.
In Figure 0.32, the user agent and the mail server are on the same host, but it is also possible that
they are on different hosts. The mail server uses the application-layer protocol SMTP (Simple
Mail Transfer Protocol) to transmit the email message to the mail server of the receiver of the
email. The sending mail server uses DNS, the domain name service, to locate the correct remote
mail server. In addition to translating host names into IP addresses, DNS also provides the IP
addresses of mail servers. For the email in Figure 0.33, the mail server at Host A queries DNS
for the IP address of the mail server that is responsible for the domain of the email receiver,
“remote-lab.net”. Once the IP address of the remote mail server is obtained, the sending mail
server starts an SMTP client and initiates a TCP connection to the SMTP server of the remote
mail server at the well-known TCP port 25. As soon as the TCP connection is established, the
SMTP client and server exchange SMTP commands and transfer the email message. All

14 These are user agents for hosts with a Unix operating system.

0.45

commands and the email message are transmitted as plain text using ASCII characters. If an
email message contains parts that are not text files, these parts are converted to ASCII
characters before transmission.

The SMTP messages for transmitting an email from an SMTP client to an SMTP server is
shown in Figure 0.34. As in FTP, all messages are transmitted as ASCII characters, using the
end-of-line sequence to indicate the end of a command. The SMTP client issues commands to
the server, and the server responds to each command with a three-digit response code and
explaining text. After the TCP connection is established, the remote mail server sends a brief
message. The client issues a HELO command followed by its domain name. Then, the client
issues a MAIL FROM command sender’s email address, which is followed by a RCPT TO
command with the receiver’s email address. After an acknowledgment from the server, the
client issues a DATA command, and transmits the email message. By comparing the original
message from Figure 0.33 to the actually transmitted message in Figure 0.34, we can see that
the mail server has added several header lines to the message. When the entire email message is
transmitted, the client indicates the end of the email by sending a line that only contains the
character “.” (period). When the SMTP server acknowledges the reception of the email
message, the client can send another message or end the SMTP session. In Figure 0.34, the
client issues a QUIT command to end the SMTP session. The mail server that receives an email
message, adds the email to a file, called mailbox, which can be accessed by the receiver.

Server: 220 mailserver.remote-lab.net Mail Server
Client: HELO local-lab.net
Server: 250 Hello local-lab.net, pleased to meet you
Client: MAIL FROM: student@local-lab.net
Server: 50 <student@local-lab.net>... Sender ok
Client: RCPT TO: instructor@remote-lab.net
Server: 250 <instructor@remote-lab.net>... Recipient ok
Client: DATA
Server: 354 Enter mail, end with "." on a line by itself
Client: Received: (from student@local-lab.net)
 by mailserver@local-lab.net (8.11.2/8.11.2) id g4OK3nu19221
 for instructor@remote-lab.net; Fri, 24 May 2002 23:03:49 -0400
 Date: Fri, 24 May 2002 23:03:49 -0400
 From: student <student@local-lab.net >
 Message-Id: <200205242003.g4OK3nu19221@mailserver@local-lab.net>
 To: instructor@remote-lab.net
 Subject: Internet Lab

 The dog ate my homework.
Client: .
Server: 250 QAA01884 Message accepted for delivery
Client: QUIT
Server: 221 mailserver@remote-lab.net closing connection

Figure 0.34. Exchange of SMTP messages between SMTP client and SMTP server.

0.46

An email message may traverse multiple SMTP servers before reaching its destination. For
example, on most networks a single host is dedicated to handle all outgoing email messages for
all hosts of the network. In this case, all hosts forward their outgoing email message to the
dedicated mail server which relays the emails to the proper destinations. Also, in many
networks, the receiving mail server does not have access to the receiver’s mailbox, and relays
incoming messages to the mail server on a host where the receiver’s mailbox resides. When a
mail server relays an email message, it adds lines to the header of an email message. These lines
can be used by the receiver of an email message to trace the path of an incoming email.

A mail servers adds an incoming emails to the mailbox of a user, and assumes that the user has
access to the mailbox. Often, however, a user is not permanently connected to its mail server. In
such situations, the user can employ mail access protocols to retrieve mail messages from their
mailboxes at a remote host. Currently, two popular mail access protocols are in wide use: Post
Office Protocol Version 3 (POP3) and Internet Mail Access Protocol (IMAP). Mail access
protocols are generally integrated as a component of the user agent.

User mailbox

Host A

queue of
messages SMTP

client

SMTP
server

Mail server

TCP port 25

TCP port 1925

POP3
server TCP port 110

SMTP
server

Email
preparation and

retrieval

Host X

POP3
clientTCP port 1925

User agent

SMTP

POP3

TCP port 1654

SMTP

Figure 0.35. A POP3 client and a mail server.

We briefly describe the operation for a user agent that uses POP3 in Figure 0.35, where a user
on Host X accesses its mailbox on Host A via POP3. The user must have a user name and a
password to access Host A, and the user agent at Host X must know the domain name or IP
address of Host A. The POP3 client at Host X initiates a TCP connection to the well-known
TCP port 110 of the POP3 server of Host A. When the TCP connection is established, the user
authenticates itself with a user name and a password. If the authorization is successful, the POP3
client can download email messages from the mailbox at Host A to Host X. The messages can
be downloaded with or without deleting the message from the remote mailbox.

0.47

Server: +OK POP3 mailserver.local-lab.net v7.62 server ready
Client: user student
Server: +OK User name accepted, password please
Client: pass MySeCreT
Server: +OK Mailbox open, 4 messages
Client: list
Server: +OK Mailbox scan listing follows
 1 861
 2 1045
 3 1560
 4 753
 .
Client: retr 1
Server: +OK 861 octets
 // The email follows
Client: dele 1
Server: +OK Message deleted
Client: quit
Server: +OK Sayonara

Figure 0.36. Exchange of POP3 messages between a POP3 client and a POP3 server.

An exchange of POP3 commands between a POP3 client and a POP3 server is shown in Figure
0.36. All commands and messages are in plain ASCII text, and lines are separated by an end-of-
line sequence (CR and LF). The POP3 server acknowledges each command from the client.
When the TCP connection is established, the POP3 server sends a greeting. Then the user
submits a user name and a password. In Figure 0.36, the password is transmitted without
encryption, but POP3 also provides more secure methods of user authentication. Once the POP3
client has authenticated itself, it issues a command to list all messages in its mailbox. The POP3
server responds with the number and length of each message. In the example in Figure 0.36, the
POP3 client downloads the first message (“retr 1”) and then deletes the message (“dele 1”). The
POP3 client ends the POP3 session with the command “quit”.

For outgoing messages, the user agent at Host X still uses SMTP. This is illustrated in Figure
0.36, where the SMTP client of the user agent at Host X connects to the SMTP server of Host
A. Here, Host A acts as a relay and forwards the message to the mail server of the email
receiver. Alternatively, the SMTP client at Host X can directly connect to the mail server of the
receiver.

5.4. The Web

The World Wide Web (WWW or Web) emerged in the early 1990s as a new application for
access to content stored on Internet hosts. Within a few years, the Web became the most popular
Internet applications, and traffic on the Internet was dominated by Web applications.

0.48

The Web is a distributed hypertext system which is implemented as a client-server application.
A Web client program, called a Web browser, retrieves and displays documents from a Web
server. The documents, often referred to as web pages, are formatted using the Hypertext
Markup Language (HTML). HTML documents are text files that contain HTML tags, which
describe how text should be displayed in the user interface of a Web browser. A hyperlink is
special type of tag. It is a reference to another document, which may be located at a different
Web server. When displayed in a browser, hyperlinks can be activated with a mouse click.
When activated, the browser retrieves the document that is referenced in the hyperlink. A Web
browser makes it convenient to access a variety of documents at different web servers, which
refer to each other by hyperlinks, thus, providing users with a feeling of navigating a global
database of documents.

On the Web, the location of a document is expressed in terms of a Uniform Resource Locator
(URL). A URL specifies a unique location for a document on the web. It can reference an
HTML document, but also any other file that can be accessed with a Web browser. An example
of a URL is http://www.cerf.net/index.html, which specifies that an HTML
document with name index.html can be accessed via the protocol HTTP from a host with the
name www.cerf.net .

(a) HTML file.

<HTML>
 <BODY>
 <H1>Internet Lab</H1>
 Click here
 for the Internet Lab webpage.
 </BODY>
</HTML>

(b) HTML file displayed in a web browser.

Figure 0.37. A minimal HTML document and its appearance in a web browser.

0.49

An HTML document and its representation in a Web browser for a minimal web page are
shown in Figure 0.37. Figure 0.37(a) depicts a simple HTML document. Tags in the document
are the portions of text which are enclosed by two brackets (< and >). The tag

here

is a hyperlink which contains a URL. Figure 0.37(b) shows how the HTML document appears
when it is displayed in a Web browser. The hyperlink is shown as underlined text. When a user
activates this hyperlink, the Web browser attempts to access the web page that is referenced in
the HTML document.

The application- layer protocol of the Web is the Hypertext Transfer Protocol (HTTP). HTTP is
a request-response protocol where an HTTP client sends requests to an HTTP server, and the
HTTP server responds with status information, possibly followed by an HTML file. HTTP
employs TCP for data transfer, and the HTTP server uses the well-known TCP port 80 to accept
requests for TCP connections. HTTP is a stateless protocol, in the sense that the HTTP server
does not keep state information about request from clients. Each HTTP server handles each
request from a client independently, even if multiple subsequent requests are made by the same
client. There is no notion of a sessions, as, for example, in Telnet and FTP.

In older versions of HTTP, which are still in use today, an HTTP client initiates one TCP
connection for each request to the HTTP server. When a single client issues multiple requests to
the HTTP server, the number of TCP connections between the HTTP client and HTTP server
can grow large. To reduce the number of TCP connections, HTTP/1.1, the current version of
HTTP, permits multiple HTTP requests and responses on the same TCP connection, leaves the
TCP connection open after a request has been served. The HTTP client does not need to wait
until a request is completed before issuing new requests.

As in many other application layer protocols of the Internet, HTTP messages are transmitted as
ASCII text, using the end-of-line character sequence to indicate the end of a message. The most
common HTTP messages sent by a client are requests for HTML or other documents. The
server responds to such a request either with a message that contains the requested document or,
if the request cannot be satisfied, with an error code.

Let us know discuss a request and a response between an HTTP client and an HTTP. Suppose a
user has typed the URL http://www.cerf.net/example.html in a web browser (see
Figure 0.37(b)). When the URL is typed, the web browser starts an HTTP client which
establishes a TCP connection to port 80 of the HTTP server of host www.cerf.net. When the
TCP connection is established, the HTTP client sends the HTTP request shown in Figure 0.38.
The HTTP request consists of the request line and a set of header line. Each line is ended with
an end-of- line sequence. The request line “GET /example.html HTTP/1.1” specifies the type of
command (GET), an identification of the requested resource (/example.html), and the version of
the HTTP protocol (HTTP/1.1). The header lines following the request line provide additional

0.50

information to the server. The request in the figure specifies the media formats, encoding
schemes, and language that can be interpreted by the client (Accept: image/gif, */*, Accept-
Language: en-us, Accept-Encoding: gzip, deflate), an identification of the type of web browser
that issued the request (User-Agent: Mozilla/4.0), the IP address of the client (Host:
192.168.123.144), and a request to keep the TCP connection in place after the HTTP request is
served (Connection: Keep-Alive). The HTTP request is completed with an empty line.

Client: GET /example.html HTTP/1.1
 Accept: image/gif, */*
 Accept-Language: en-us
 Accept-Encoding: gzip, deflate
 User-Agent: Mozilla/4.0
 Host: 192.168.123.144
 Connection: Keep-Alive

Server: HTTP/1.1 200 OK
 Date: Sat, 25 May 2002 21:10:32 GMT
 Server: Apache/1.3.19 (Unix)
 Last-Modified: Sat, 25 May 2002 20:51:33 GMT
 ETag: "56497-51-3ceff955"
 Accept-Ranges: bytes
 Content-Length: 81
 Keep-Alive: timeout=15, max=100
 Connection: Keep-Alive
 Content-Type: text/html

 <HTML>
 <BODY>
 <H1>Internet Lab</H1>
 Click here
 for the Internet Lab webpage.
 </BODY>
 </HTML>

Figure 0.38. Exchange of HTTP messages between an HTTP client and an HTTP server.

The HTTP response message to the request consists of a status line, a set of header lines, and an
entity body. The status line is HTTP/1.1 200 OK and has three parts: the HTTP version, a
status code, and a status phrase. The version (HTTP/1.1) is the same as in the HTTP request.
The status code is a three-digit number that states whether the request is successful, or indicates
if a problem has been encountered. The status phrase provides a textual explanation to the
status code. Here, the response “200 OK” indicates that the request is successful. As shown in
Figure 0.38, the HTTP response has many header lines, including the date and time of the web
access (Date: Sat, 25 May 2002 21:10:32 GMT), the type and version of the HTTP
server (Server: Apache/1.3.19 (Unix)), the date when the downloaded document was last
modified (Last-Modified: Sat, 25 May 2002 20:51:33 GMT), a tag that can be used
to distinguish different versions of the same resource (ETag: "56497-51-3ceff955"),

0.51

information if the downloaded file has been fragmented (Accept-Ranges: bytes), the
length of the downloaded document in bytes (Content-Length: 81), a confirmation that the
TCP connection will be kept open (Keep-Alive: timeout=15, max=100, Connection:
Keep-Alive), and the media type that follows the header (Content-Type: text/html).
Then, followed by an empty line, the HTTP server includes the requested HTML file in the
entity body.

We note that the example is quite simplistic. HTTP has a significant level of sophistication, and
web browsers and servers are very complex software systems. There are numerous additions
and enhancements to the web, such as web caches, dynamic content, remote execution of
programs at a web server, and security of transactions.

0.52

The discussion of Internet applications showed that many clients of application layer
protocols set up a TCP connection to a server and then exchange protocol messages over the
TCP connection as ASCII text. Since Telnet clients send single ASCII characters over a TCP
connection, a Telnet client program can be used to emulate the client portion of many
application layer-protocols.

Generally, a Telnet client program is started with the command

 telnet hostname

, where hostname is the domain name (or IP address) of a host on the Internet. By default, a
Telnet client program attempts to establish a TCP connection to TCP port 23 of the host,
which is the well-known port of a Telnet server. However, if the Telnet client is started with
the command

 telnet hostname port

, where port is a port number, the Telnet client program tries to set up a TCP connection to
the given port number. Thus, by setting up TCP connections to a well-known port of
application-layer protocols (e.g., 21, 25, 80, 110), a user can directly interact with the servers
of application-layer protocols at remote hosts. As an example, by typing

 telnet www.cerf.net 80
a Telnet client establishes a TCP connection to a remote HTTP server. After the connection is
established, typing the HTTP request

GET /index.html HTTP/1.1
at the Telnet client results in a web access of the document at URL
www.cerf.net/index.html. In a similar fashion, a TCP client can emulate an SMTP
client to send emails to an SMTP server or a POP3 client to retrieve emails from a POP3
server (Emulating an FTP client generally fails since FTP uses two TCP connections).

5.5. Recent Applications

New Internet applications are constantly emerging. In recent years, multimedia applications
have emerged for the Internet that exploit the capability of modern computer systems to process
audio and video data. For example, streaming media applications can retrieve and play back
audio and video data, without creating a local copy of the data on the retrieving host.
Application layer protocols in support of streaming media applications include RTP (Real-time
transport protocol), which is used for encapsulation of multimedia data, and RTSP (Real-time
streaming protocol), which supports client control functions for interactions with a streaming
server. Another multimedia application is IP telephony, which refers to the technologies to
support telephony in the Internet. Voice-over-IP (VoIP) is an ambitious standardization effort of
IP telephony, which includes application layer protocols for signaling, for transmission of

0.53

digitized voice, and for interfacing to the legacy telephone network. Peer-to-peer (P2P)
applications are a new class of applications that abandon the client-server model which
characterizes most Internet applications. Instead of clients and servers, there are only P2P
clients. Groups of P2P clients form a virtual network and use the virtual network to exchange
data.

0.54

ASCII Table

D
ec

im
a

l

H
ex

a
d

ec
im

a
l

C
h

a
ra

ct
e

r

D
ec

im
a

l

H
ex

a
d

ec
im

a
l

C
h

a
ra

ct
e

r

D
ec

im
a

l

H
ex

a
d

ec
im

a
l

C
h

a
ra

ct
e

r

D
ec

im
a

l

H
ex

a
d

ec
im

a
l

C
h

a
ra

ct
e

r

0 00 NUL (Null) 32 20 Space 64 40 @ 96 60 `

1 01 SOH (Start of heading) 33 21 ! 65 41 A 97 61 a

2 02 STX (Start of text) 34 22 " 66 42 B 98 62 b

3 03 ETX (End of text) 35 23 # 67 43 C 99 63 c

4 04 EOT (End of transmission) 36 24 $ 68 44 D 100 64 d

5 05 ENQ (Enquiry) 37 25 % 69 45 E 101 65 e

6 06 ACK (Acknowledge) 38 26 & 70 46 F 102 66 f

7 07 BEL (Bell) 39 27 ' 71 47 G 103 67 g

8 08 BS (Backspace) 40 28 (72 48 H 104 68 h

9 09 HT (Horizontal tab) 41 29) 73 49 I 105 69 i

10 0A LF (Linefeed) 42 2A * 74 4A J 106 6A j

11 0B VT (Vertical tab) 43 2B + 75 4B K 107 6B k

12 0C FF (Form feed) 44 2C , 76 4C L 108 6C l

13 0D CR (Carriage return) 45 2D - 77 4D M 109 6D m

14 0E SO (Shift out) 46 2E . 78 4E N 110 6E n

15 0F SI (Shift in) 47 2F / 79 4F O 111 6F o

16 10 DLE (Data link escape) 48 30 0 80 50 P 112 70 p

17 11 DC1 (Device Control 1) 49 31 1 81 51 Q 113 71 q

18 12 DC2 (Device Control 2) 50 32 2 82 52 R 114 72 r

19 13 DC3 (Device Control 3) 51 33 3 83 53 S 115 73 s

20 14 DC4 (Device Control 4) 52 34 4 84 54 T 116 74 t

21 15 NAK (Negative Acknowledge) 53 35 5 85 55 U 117 75 u

22 16 SYN (Synchronous idle) 54 36 6 86 56 V 118 76 v

23 17 ETB (End transmission blocks) 55 37 7 87 57 W 119 77 w

24 18 CAN (Cancel) 56 38 8 88 58 X 120 78 x

25 19 EM (End of medium) 57 39 9 89 59 Y 121 79 y

26 1A SUB (substitute) 58 3A : 90 5A Z 122 7A z

27 1B ESC (Escape) 59 3B ; 91 5B [123 7B {

28 1C FS (File separator) 60 3C < 92 5C \ 124 7C |

29 1D GS (Group separator) 61 3D = 93 5D] 125 7D }

30 1E RS (Record separator) 62 3E > 94 5E ^ 126 7E ~

31 1F US (Unit separator) 63 3F ? 95 5F _ 127 7F DEL

0.55

