Q1.

A 4.40-g piece of solid CO_2 (dry ice) is allowed to sublime to CO_2 (gas) in a balloon. The final volume of the balloon is 1.00 L at 300. K. What is the pressure of the gas?

- A) 2.46 atm
- B) 246 atm
- C) 0.122 atm
- D) 122 atm
- E) 4.67 atm

Q2.

Calculate the root mean square velocity for the O_2 molecules in a sample of O_2 gas at 25.0°C.

- A) 482 m/s
- B) $2.32 \times 10^5 \text{ m/s}$
- C) $658 \times 10^2 \text{ m/s}$
- D) 853 m/s
- E) 97.5 m/s

Q3.

What would happen to the average kinetic energy of the molecules of a gas sample if the temperature of the sample increased from 20°C to 40°C?

- A) It would increase.
- B) It would double.
- C) It would decrease.
- D) It would become half its value.
- E) It would remain the same.

O4

It is found that 250. mL of gas at STP has a mass of 1.00 g. What is the molar mass?

- A) 89.7 g/mol
- B) 28.0 g/mol
- C) 14.0 g/mol
- D) 22.4 g/mol
- E) 11.2 g/mol

Q5.

A gas absorbs 72.2 J of heat and undergoes expansion from 1.00 to 2.50 liters against a pressure of 1.00 atm at constant temperature. What is the change in internal energy of the gas? (1 L atm = 101.3 J)

- A) -79.8 J
- B) +79.8 J

C) +224 J

D) -224 J

E) -101.3 J

Q6.

A 100.0 g copper calorimeter at a temperature of 15.0° C contains 200.0 g of H_2 O at 15° C. A 540.0 g mass of titanium at a temperature of 100.0° C is plunged into the water. The temperature of water rises to 34.7° C. What is the specific heat of titanium?

(Notes: specific heat of Cu = 0.0930 J/°C.g; specific heat of water = 4.18 J/°C.g)

A) 0.472 J/g $^{\circ}\text{C}$

B) 183.2 J/g °C

C) 1.647 J/g °C

D) 0.093 J/g °C

E) 540.0 J/g °C

O7.

From the gaseous reactions,

$$\frac{1}{2}$$
 H₂ + N₂ + $\frac{5}{2}$ O₂ \rightarrow HNO₃ + NO₂ \triangle H = -101 kJ

$$2 \text{ NH} + \text{H}_2 \rightarrow \text{N}_2 \text{H}_4$$

$$\Delta H = -567 \text{ kJ}$$

$$2 N_2 O_5 \rightarrow \qquad 2 N_2 + \qquad 5 O_2$$

$$\Delta H = +22.6 \text{ kJ}$$

calculate ΔH for the following reaction,

$$N_2H_4 + 2 N_2O_5 \rightarrow 2 HNO_3 + 2 NO_2 + 2 NH$$

A) +388 kJ

B) -287 kJ

C) +590 kJ

D) +287 kJ

E) -388 kJ

O8.

Find the wavelength in nanometers (nm) of the light that results from the electronic transition from level n = 3 to level n = 2 of an excited hydrogen atom. ($R_H = 2.178 \times 10^{-18} \text{ J}$)

A) 656.7 nm

B) 432.5 nm

C) 222.5 nm

D) 832.5 nm

E) 121.5 nm

Q9.

Which quantum number determines the energy of an orbital?

- A) The principal quantum number.
- B) The angular momentum quantum number.
- C) The magnetic quantum number.
- D) The electron spin quantum number.
- E) The energy of an orbital cannot be determined.

Q10.

A 1.00- L gas sample at 100.°C and 600. torr contains 50.0% of helium(He) and 50.0% of xenon(Xe) by mass. What is the partial pressure of the xenon gas?

- A) 18 torr
- B) 582 torr
- C) 25 torr
- D) 124 torr
- E) 285 torr

Q11.

Which of the following atoms do not form stable isolated X^- ion?

- A) Mg
- B) C
- C) O
- D) F
- E) Cl

Q12.

Arrange the following atoms in order of increasing size.

Si, F, Na, Sr, N

- A) F < N < Si < Na < Sr
- B) Sr < Na < Si < N < F
- C) F < N < Na < Si < Sr
- D) F < N < Sr < Si < Na
- E) Si < N < F < Na < Sr

O13.

The electron configuration for silver is,

- A) [Kr] 5s¹ 4d¹⁰
- B) $[Kr] 5s^2 4d^9$
- C) [Xe] $6s^2 4f^{14}5d^3$
- D) $[Kr] 5s^2 4d^{10} 5p^1$

E) $[Ar] 4s^2 3d^{10} 4p^4$

$Q1\overline{4}$.

Which of the following molecules has no dipole moment?

- A) SO₃
- B) NH₃
- C) CHCl₃
- D) HF
- E) H₂O

O15.

Arrange the following bonds in order of decreasing ionic character?

- A) K F > Ca O > C F > N O > Br Br
- B) K F > Ca O > N O > C F > Br Br
- C) Br Br > K F > Ca O > N O > C F
- D) Ca-O > N-O > C-F > Br -Br > K-F
- E) Br Br > N O > C F > Ca O > K F

Q16.

Calculate ΔH_f for potassium chloride.

$$K(s) + 1/2 Cl_2(g) \rightarrow KCl(s)$$

Given that,

Lattice energy	-690.	kJ/mol
Ionization energy for K	419	kJ/mol
Electron affinity of Cl	-349	kJ/mol
Bond energy of Cl ₂	239	kJ/mol
Enthalpy of sublimation for K	64	kJ/mol

- A) -437 kJ/mol
- B) +181 kJ/mol
- C) -109 kJ/mol
- D) +327 kJ/mol
- E) -289 kJ/mol

O17.

Which of the following compounds has the most exothermic lattice energy?

- A) Al_2O_3
- B) CaSO₄
- C) Na₂SO₄

D) KCl E) LiF
Q18. In the Lewis structure that obeys the octet rule for PO ₃ ³⁻ ion, the number lone pair(s) of electrons on the phosphorus atom is,
A) 1 B) 2 C) 0 D) 3 E) 4
Q19. Which of the followings have a molecular structure of See-saw?
A) TeF ₄ B) SiF ₄ C) XeCl ₄ D) CHCl ₃ E) NH ₄ ⁺
Q20. What is the formal charge for chlorine atom in ClO ₃ whose Lewis structure obeys the octet rule?
A) +2 B) -2 C) +1 D) -4

E) +3