CHEM 102 Final Test - 061

	CHEW 102 Final Test - 001
D	etermination of the reaction rate:
1.	
	B. the starch solution was omitted from the experiment?
2.	The rate low of a reaction is $rate = k[A]^{p}[B]^{q}$
	to determine the reaction order <i>p</i>
	A. What is the numerical value of the <i>y</i> -intercept?
	B. What is the kinetic interpretation of the value for the y-intercept?
	C. What does its value equal according to the equation given above?
3.	State the effect on the following reaction rate $rate = k'[H_2O_2]^p[KI]^q$ (Assume no volume change for any of the concentration changes.) A. An increase in the H ₂ O ₂ concentration.
	B. An increase in the $Na_2S_2O_3$ concentration.
	C. The substitution of a 0.5% starch solution for one at 0.2%.
4.	If 0.2 M KI replaced the 0.3 M KI in this experiment, Solution A: $0.3 M \text{ KI} + 0.02 M \text{ Na}_2\text{S}_2\text{O}_3 + \text{Starch}$ Solution B: $0.1 M \text{ H}_2\text{O}_2$ how would this affect the following? A. The rate of the reaction.
	B. The slopes of the graphs used to determine p and q .
	C. The value of the reaction rate constant.
5.	The temperature of the warm water bath is recorded too high. How will this technique error affect the reported activation energy for the reaction too high or too low? Explain.

An Equilibrium constant

6.	 Fingerprint smudge are present on the cuvet containing the solution placed into the spectrophotometer for analysis. A. How does this technique error affect the absorbance reading for FeNCS²⁺ in the analysis?
	B. Will the equilibrium concentration of FeNCS ²⁺ be recorded as being too high or too low?
	C. Will the equilibrium concentration of SCN ⁻ be too high, too low, or unaffected by the technique error?
	D. Will the K_C for the equilibrium be too high, too low or unaffected by the technique error?
7.	For the preparation of solution, $0.002 M \operatorname{Fe}(\operatorname{NO}_3)_3 + 0.002 M \operatorname{NaSCN} + 0.1 M \operatorname{HNO}_3$ if the 0.1 <i>M</i> HNO ₃ is omitted. A. How does this technique error affect the absorbance reading for FeNCS ²⁺ ?
	 B. Will the K_c for the equilibrium be too high, too low or unaffected by the technique error?
8.	The equation,
	$A = a \cdot b \cdot c$ becomes nonlinear at high concentrations of the absorbing substance. Suppose you prepare a solution with a very high absorbance that is suspect in not following the linear relationship. How might you still use the sample for your analysis, rather than discarding the sample and the data?
9.	Glass cuvets, used for precision absorbance measurements in a spectrophotometer, are marked so that they always have the same orientation in the sample compartment. What error does this minimize and why?

Antacid Analysis

hydro	ntacid tablet for analysis was not finely pulverized before its reaction with chloric acid. How might this technique error affect the reported amount of d in the sample?
additio	antacid analysis, all of the CO_2 is not removed by gentle boiling after the on of HC1. Will the reported amount of antacid in the sample be too high, w, or unaffected?
•••••	
titratio amour	bubble was initially trapped in the buret but was dispensed during the back on of the excess HC1 As a result of this technique error, will the reported at of antacid in the sample be too high or too low?
HC1 v	comophenol blue endpoint is surpassed in the back titration of the excess with the sodium hydroxide titrant. As a result of this technique error, will the ed amount of antacid in the sample be too high or too low?
effecti	of the "newer" antacids contain sodium citrate, $Na_3C_6H_5O_7$, as the ve, but milder antacid ingredient. Write a balanced equation representing the antacid effect of the citrate ion, $C_6H_5O_7^{3-}$.
B.	Will 500 mg of Na ₃ C ₆ H ₅ O ₇ (258.1 g/mol) or 500 mg of CaCO ₃ (100.1 g/mol) neutralize more moles of hydronium ion? Show calculations. Assume that both the C ₆ H ₅ O ₇ ³⁻ and the CO ₃ ²⁻ ions become fully protonated.

Vitamin C Analysis

cc hi	he mass used to prepare the $Na_2S_2O_3$ solution was enormously calculated prrectly too low. Will the reported molar concentration of the $Na_2S_2O_3$ be too gh, too low, or unaffected?
ca is of of	he mass used to prepare the $Na_2S_2O_3$ solution was calculated correctly, the ilculation was based on the availability $Na_2S_2O_3.5H_2O$. only anhydrous Na_2S_2O available. If the calculated mass is used to measure the mass of $Na_2S_2O_3$ instea $Na_2S_2O_3.5H_2O$ for the preparation of the solution, will the molar concentration of the $Na_2S_2O_3$ be higher or lower than expected?
18. A	. What is the purpose of adding sodium bicarbonate to the ascorbic acid sample? Write a balanced equation for its reaction.
В	The NaHCO ₃ solution is omitted in an analysis of a sample. Will the reported amount of ascorbic acid in the sample be too high, too low, or unaffected?
th W	the Vitamin C analysis Experiment, after adding the standard solution of KIO ₃ e KI, H ₂ SO ₄ , and NaHCO ₃ solutions, the sample solution remains colorless! /hat modification of the Experimental Procedure can be made to correct for this nexpected observation in order to complete the analysis?
ac ne	the reaction of standard KIO ₃ , the KI, H_2SO_4 , and NaHCO ₃ solutions and after lding starch, the deep-blue color of the I ₂ -starch complex does not appear! What ext? Should you continue titrating with the standard Na ₂ S ₂ O ₃ solution or discard e sample? Why?
m	the analysis of Vitamin C, the final buret reading is read and recorded as 27.43 L instead of the correct 28.43 mL. Will the reported amount of ascorbic acid in e sample be too high or too low? Explain.