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High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were
completely analyzed leading to a large set of assigned lines. The experimental levels derived from
this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltoni-
ans. Precise band centers, rotational and centrifugal distortion constants were determined. The
following band centers in cm�1 were obtained: m0(3m2)=1538.720198(11), m0(m1 + m3)=2475.828004(29),
m0(m1 + m2 + m3)=2982.118600(20), m0(2m3)=2679.800919(35), and m0(2m1 + m3)=3598.773915(38). The rota-
tional constants obtained in this work have been fit together with the rotational constants of lower-lying
vibrational states [W.J. Lafferty, J.-M. Flaud, R.L. Sams, EL Hadjiabib, J. Mol. Spectrosc. 252 (2008) 72–76]
to obtain equilibrium constants as well as vibration–rotation constants. These equilibrium constants have
been fit together with those of 32S16O2 [J.-M. Flaud, W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396–402]
leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain
anharmonic rotational constants.

Published by Elsevier Inc.
1. Introduction 4 lm spectral regions were recorded using a Bruker Fourier trans-
1 Certain commercial equipment instruments or materials are identified in this
paper to adequately specify the experimental procedure. Such identification does not
imply recommendation or endorsement by the National Institute of Standards and
Technology nor does it imply that the materials or equipment identified are
Recently the infrared spectrum of 34S16O2 has been the subject
of a high resolution study [1] concerning the three fundamental
bands, m1, m2 and m3, as well as the corresponding hot bands,
2m2 � m2, m1 + m2 � m2 and m2 + m3 � m2. In addition, the m2 + m3 com-
bination band was studied. In this paper, we present a high-resolu-
tion analysis of the 3m2 � 2m2, m1 + m3, m1 + m2 + m3 � m2, 2m3, and
2m1 + m3 bands. The molecular spectroscopic constants were de-
rived by fitting the experimental energy levels of the (030),
(101), (111), (002), and (201) vibrational states of 34S16O2 .The
rotational constants obtained in this work were fit together with
those of Ref. [1] and a very accurate set of equilibrium rotational
constants was obtained. These equilibrium constants were finally
fit with those of 32S16O2 [2] and an improved equilibrium structure
has been determined. The observed band centers have been fit to
obtain anharmonic vibrational constants.

2. Experimental details

Numerous high-resolution spectra of a sulfur dioxide sample
enriched in 34SO2 (95.4%) covering the 19, 7–8, 5–6 and 3.3–
Inc.

erty).
form spectrometer.1 The wavenumber uncertainty of lines in all
the regions studied was about ±0.0002 cm�1 for well isolated lines.
The experimental details for all the bands studied including a table
of the recording conditions have been given in a previous paper [1].

3 . Analysis and results

For the m1 + m3 band, the analysis was started using the con-
stants given in [3]. For all the remaining bands the analysis was
conducted either by following distinctive line series or using pre-
dictions based on the analysis of the lower-lying bands [1]. Table
1 gives the range of observed energy levels for each state.2 The
upper state rotational levels were fit using an A-type Watson Ham-
iltonian written in the Ir representation [4] and the corresponding
Hamiltonian constants are given in Table 2. In Table 1 we present
also the statistical analysis of the results which show clearly the
necessarily the best available for the purpose.
2 A list of assigned experimental lines can be obtained from the authors. The data

have also been deposited in the archives of the journal.
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Table 1
Range of quantum numbers observed for the experimental energy levels and
statistical analysis of the energy level calculation for the (03 0), (1 01), (002),
(111), and (2 01) vibrational states of 34S16

2 O2

Vibrational state (030) (101) (002) (111) (201)
Number of levels 126 836 488 327 413
Jmax 44 64 57 45 47
Kmax 6 22 18 15 13
0.0000 6 d < 0.0002 72.2% 61.5% 36.5% 48.6% 33.7%
0.0002 6 d < 0.0004 20.6% 25.8% 28.3% 28.8% 22.0%
0.0004 6 d < 0.0019 7.2% 12,7% 35.2% 22.6% 44.3%
Std. Devi, (10�3 cm�1) 0.25 0.29 0.48 0.35 0.58

d = |EObs–ECalc|.

52 W.J. Lafferty et al. / Journal of Molecular Spectroscopy 253 (2009) 51–54
quality of both the experimental data and the fits. The very good
agreement between observed and calculated spectra can also be ob-
served through the comparisons preformed for selected spectral re-
gions (Figs. 1–3).

4. 34SO2 equilibrium constants

In order to determine the equilibrium constants of 34SO2 we
have fit the accurate rotational constants derived in this work for
the (030), (101), (002), (111) and (201) states as well as the con-
stants determined earlier [1] for the (000), (010), (020), (100),
(001), (110) and (011) states. The quality of the available data
is variable and we have assigned a weight proportional to the in-
verse of the squares of the uncertainty for each datum. Each rota-
tional constant was fit using an expansion of the form:

Xv ¼ Xe �
X

i

ax
i ðvi þ

1
2
Þ þ

X

i6j

cx
ijðvi þ

1
2
Þðvj þ

1
2
Þ þ � � � ð1Þ

The data used in the fitting are given in Table 3 and the values of
the equilibrium constants and vibration–rotation interaction con-
stants are given in Table 4. Note that these constants are fully con-
sistent with those obtained previously for 34S16O2 [2]. With the set
of rotational equilibrium constants obtained in this way and those
obtained previously for 32S16O2 it proves possible to improve the
Table 2
Vibrational band centers and rotational constants for the (030), (101), (002), (1 11) and

(030) (101) (

Ev 1538.720198(11)a 2475.828004(29) 2
A 2.08707257(200) 1.948429485(700) 1
B 0.344366871(370) 0.341402270(180) 0
C 0.290624729(210) 0.289753669(140) 0
DK � 104 1.099857(1500) 0.81255487(3800) 0
DJK � 105 �0.4223388(1100) �0.37974105(8500) �
DJ � 106 0.22049743(1700) 0.22117133(6400) 0
dK � 106 0.1409469(1200) 0.836844(1100) 0
dJ � 107 0.58395256(9700) 0.5806223(5500) 0
HK � 107 0.9623(2800) 0.11202773(5800) 0
HKJ � 109 �0.87 b �0.544729(2300) �
HJK � 1011 0.67 b c c

HJ � 1012 c 0.41413(1300) c

hK � 109 0.9 b 0.53402(1100) c

hKJ � 1013 c c c

hJ � 1012 c 0.19118(1100) c

LK � 1011 �0.48 b c c

LKKJ � 1012 0.18 b c c

LKJ � 1015 c c c

LJJK � 1017 c c c

LJ � 1018 c c c

PK � 1015 0.82 b c c

PKKKJ � 1016 c c c

PKKJ � 1017 c c c

a Uncertainties are 1r.
(All the results are in cm�1).

b Extrapolated from (000),(010) and (020) values [1].
c Fixed at ground state values [1].
d Fixed at (010) values [1].
equilibrium structure of SO2. However, the constants derived from
the fitting have first to be corrected for small contributions from
electron–rotation interaction effects and from centrifugal distor-
tion terms (Figs. 1–3).

The correction for the effect of electron–rotation interaction can
be written as [5,6]

Iaelect ¼ �ðm=MÞIagaa ð2Þ

Where m is the mass of the electron and M the mass of the proton. The
molecular gaa factors have been taken from the study of Burrus [7].

To take into account the centrifugal distortion corrections, we
followed the method outlined in [4]. The rotational constants de-
rived from the fitting given in Table 4 can be related to the actual
constants through:

Ae ¼ BðAÞz ¼ Be
z þ 16T004 � 2sxzxz ð3Þ

Be ¼ BðAÞx ¼ Be
x � 8ðrþ 1ÞT004 � 2sxzxz ð4Þ

Ce ¼ BðAÞy ¼ Be
y þ 8ðr� 1ÞT004 þ 3sxzxz ð5Þ

with T004 ¼
1

16
ðTxx þ Tyy � 2TxyÞ ð6Þ

Txx ¼ �DJ � 2dJ ; Tyy ¼ �DJ þ 2dJ ; Tzz ¼ �DJ � DJK � DK ð7Þ
and r ¼ ð2Be

z � Be
x � Be

yÞ=ðB
e
x � Be

yÞ ð8Þ

Txy was derived using planarity conditions:

Txy ¼
1
2
ðB2

x B2
yÞð�

Tzz

B4
z

þ Txx

B4
x

þ Tyy

B4
y

Þ ð9Þ

and sxzxz was estimated using:

sxzxz ¼ �16BxByBz=x2
3 ð10Þ

Table 5 gives the corrected moments of inertia. These moments of
inertia were least squares fit together with those previously obtained
for 32S16O2 [2], leading to the equilibrium structural parameters:

reðS@OÞ ¼ 1:4307932ð40ÞÅ
0

and <eðO@S@OÞ ¼ 119:32898ð24Þ�:
(201) vibrational states of 34S16O2

002) (111) (201)

679.800919(0.35) 2982;118600(20) 3598.773915(38)
.92878637(150) 1.986059608(860) 1.94863494(220)
.341877125(200) 0.341471177(100) 0.339774427(210)
.290084589(110) 0.2892184036(710) 0.288351064(150)
.7894967(1400) 0.9002291(1200) 0.8218775(3600)
0.4049918(2100) �0.39676854(5900) �0.37010870(8400)
.22397966(8000) 0.22148245(4000) 0.2205614(6900)
.706632(4100) 0.1020851(2400) 0.918387(4500)
.5882873(4400) 0.5841908(2500) 0.5806814(5000)
.1059884(3100) 0.1389191(4400) 0.108277(1500)
0.50099(1400) d c

d c

d c

d c

d c

d c

d c

d c

d c

d c

d c

d c

d c

d c



Table 3
Observed and calculated rotational constants

A B C

EXP (OAC)*106 EXP (OAC)*106 EXP (OAC)*106

000 1.967733713a 0.26 0.3441883891 �0.22 0.2922455227 0.30
010 2.005731339 �0.59 0.3442590474 0.30 0.2917103888 �0.065
020 2.04547640 0.00 0.344318760 0.50 0.291170092 �0.16
100 1.96821909 �0.59 0.342551346 �1.54 0.290864145 �0.23
001 1.94814294 �0.59 0.343034313 1.94 0.291162785 �0.33
030 2.08707257 0.00 0.344366871 �0.29 0.290624729 0.098
110 2.006420332 1.04 0.342625774 2.75 0.2903419697 0.41
011 1.985576007 1.04 0.343099540 �2.97 0.2906143287 0.41
101 1.948429791 1.04 0.341402177 �0.74 0.289753504 �2.79
002 1.92878637 0.00 0.341877125 0.98 0.290084589 3.57
111 1.986059691 �1.63 0.341471193 �1.86 0.2892184057 �0.64
201 1.94863494 0.00 0.339774427 0.97 0.288351064 1.60

a (All the results are in cm�1).

Table 4
34S16O2 Equilibrium rotational constants and vibration–rotation interaction constants

A B C

Xe 58724.057(210)a 10359.2414(800) 8805.9516(110)
ax

1 �16.944(170) 49.1314(730) 41.186(100)
ax

2 �1095.343(390) �2.4210(710) 15.832(120)
ax

3 582.757(240) 34.7569(610) 31.8348(850)
cx

11 �1.1846(710)
cx

12 6.0260(810) 0.3583(730)
cx

13 �6.0260(810) 0.1877(580) �0.7789(610)
cx

22 23.795(210) �0.1592(200) �0.0814(240)
cx

23 �16.9993(820) �0.4327(730)
cx

33 3.4891(830)
cx

222 0.5281(360)

a Uncertainties are 1r.
(All the results are in MHz).
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Fig. 1. Comparision of observed and calculated transitions of the a-type 111–010
hot band of 34SO2. Most of the transitions originating in the ground state of the band
are off-scale. The lower-state rotational quantum numbers are given for each hot
band line observed. The upper state quantum numbers can be obtained using
DJ=+1, DKa=0 and DKc=+1 .
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Fig. 2. Comparison of observed and calculated high J transitions in the a-type
m1 + m3 band of 34SO16O2.
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Fig. 3. Comparison of observed and calculated spectra of a small portion of the
weak b-type 2m3 band of 34SO16O2 .
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5. Vibrational anharmonic constants

During the course of this work 11 vibrational energy levels have
been determined. This permits us to make good estimates of the



Table 5
Moments of inertia of 34S16O2 in amu ÅA

0
2

Ifit
a DIelec

a DIcd
a Ia

IA 8.605983(31)a,b �0.00284 0.000014 8.603171(60)c

IB 48.785336(77) �0.003268 0.000961 48.783028(150)c

IC 57.390.623(76) �0.002313 �0.001641 57.386669(140)c

a The value 505379.07 MHz/amu ÅA
0

2 has been used to convert the Xe rotational
constants into the Ifit

a values.
b Uncertainties are 1r.
c Estimated uncertainties.

Table 6
Vibrational harmonic and anharmonic constants of 34S16O2 in cm�1

Constant (unc)

x0
1 1148.3699(130)a

x11 �3.8863(89)
x0

2 513.8656(90)
x22 �0.3195(34)
x0

3 1350.2981(158)
x33 �5.1985(87)
x12 �3.206(10)
x13 �13.760(11)
x23 �4.040(10)
x1 1160.7366(200)b

x2 517.8043(120)b

x3 1364.3966(220)b

a Uncertainties are 1r.
b Estimated uncertainties.
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first order anharmonic constants. The eleven data were fit to the
equation [8]:

G0ðv1; v2; v3Þ ¼ x0
1v1 þx0

2v2 þx0
3v3 þ x11v2

1 þ x22v2
2 þ x33v2

3

þ x12v1v2 þ x13v1v3 þ x23v2v3 ð11Þ

The constants obtained from the fit are given in Table 6. The super-
script 0 indicates that the expression is referred to the lowest vibra-
tional state. Although the uncertainties given are one standard
deviation, the data are so limited that they must be considered as
estimates with the true error probably being several times larger.
The xi, which are the zero-order frequencies referred to the mini-
mum of the potential curve, can be easily calculated (see Ref. [8])
and are also listed in Table 6.

6. Conclusion

An extensive analysis of the 34S16O2 spectrum was performed
leading to the accurate determination of band centers, rotational
and centrifugal distortion constants for the (030), (101), (111),
(002) and (201) vibrational states of this molecule. Equilibrium
rotational constants were derived, and an improved equilibrium
structure has been obtained for sulfur dioxide.
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