Chapter 2

Atoms, Molecules, and Ions

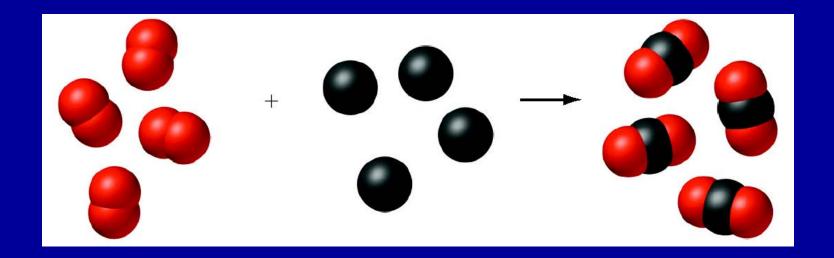
Topics

- The atomic theory
- The structure of the atom
- Atomic number, mass number and isotopes
- The Periodic Table
- The atomic mass scale and the average atomic mass
- Molecules and molecular compounds
- Ions and ionic compounds

2.1 The Atomic Theory

- Matter is composed of <u>fire</u>, <u>earth</u>, <u>water and air</u>
- The Greek philosopher Democritus (460 B.C. 370 B.C.) was among the first to suggest the existence of atoms (from the Greek word "atomos")
 - He believed that atoms were indivisible (undividable) and indestructible
 - No support was given to this theory by contemporaries Plato or Aristotle
 - His ideas did agree with later scientific theory, but did not explain chemical behavior, and was not based on the scientific method – but just philosophy

2.1 The Atomic Theory


 1808 - English scientist and school teacher John Dalton formulated an accurate definition of the indivisible building blocks of matter that we call atoms

Dalton's Atomic Theory (1808)

- Elements are made up of extremely small particles called atoms
- Atoms of one element are identical.

 Atoms of different elements are different.
- Compounds are formed when atoms combine.
- Each compound has always same type and relative number of atoms
- Chemical reactions are rearrangement of atoms but atoms of one element are never changed into atoms of other element., or created or destroyed.

 A chemical reaction rearranges atoms in chemical compounds; it does not create or destroy them.

Combination of oxygen and carbon to form carbon dioxide

- Dalton's made no attempt to describe the structure or composition of atoms.
- He attributed the difference in chemical properties of various elements to the fact that atoms of one element are different from atoms of the others.
- Accordingly, at that time, in order to form a certain compound a specific number of atoms of the right kind must combine.
- This idea came as a support for the law of definite proportions and law of multiple proportions which were known at that time.

Law of Definite Proportion (Proust's Law)

- A given compound always contains exactly the same proportion of elements by mass.
- ➤ Water is composed of 11.1% H and 88.9% O (w/w)

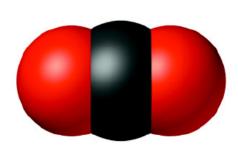
Law of definite proportions

- Different samples of a given compound always contain the same elements in the same mass *ratio*.
 - Examples

Sample	Mass of O (g)	Mass of C (g)	Ratio (g O : g C)
123 g carbon dioxide	89.4	33.6	2.66:1
50.5 g carbon dioxide	36.7	13.8	2.66:1
88.6 g carbon dioxide	64.4	24.2	2.66:1

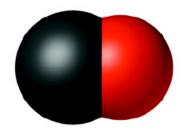
Sample	Mass of O (g)	Mass of C (g)	Ratio (g O : g C)
16.3 g carbon monoxide	9.31	6.99	1.33:1
25.9 g carbon monoxide	14.8	11.1	1.33:1
88.4 g carbon monoxide	50.5	37.9	1.33:1

Law of Multiple Proportions


- ➤ When two elements form a series of compounds, the ratios of the masses of the second element that combine with a fixed mass(1 gram) of the first element can always be reduced to small whole numbers.
- The ratio of the masses of oxygen that combine with 1g of H in H_2O and H_2O_2 will be a small whole number ("2").

Example

- Water, H₂O has 8 g of oxygen per 1g of hydrogen.
- Hydrogen peroxide, H₂O₂, has 16 g of oxygen per 1g of hydrogen.
- 16/8 = 2/1
- Small whole number ratio.
- This fact could be explained in terms of atoms

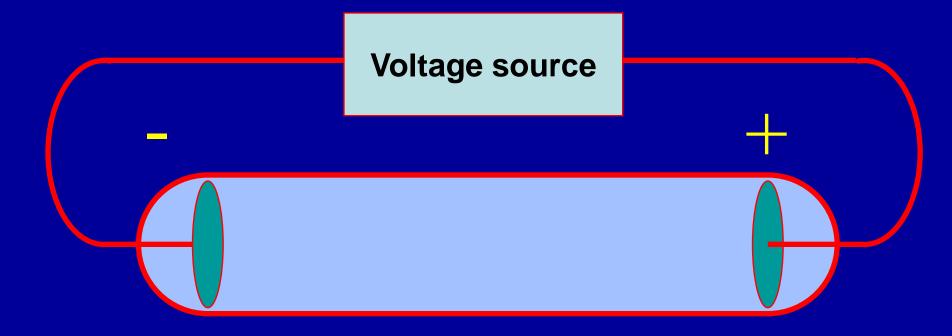

$\frac{\text{ratio of O to C in carbon dioxide}}{\text{ratio of O to C in carbon monoxide}} = \frac{2.66}{1.33} = 2:1$

Carbon dioxide

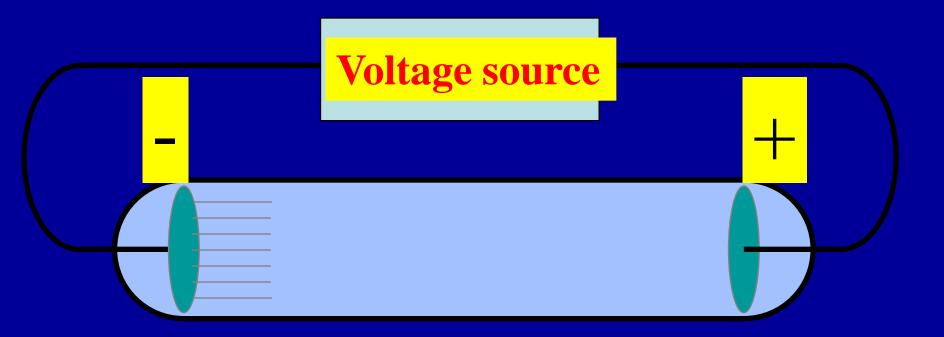
$$\frac{O}{C} = \frac{O}{O} = \frac{2}{1}$$

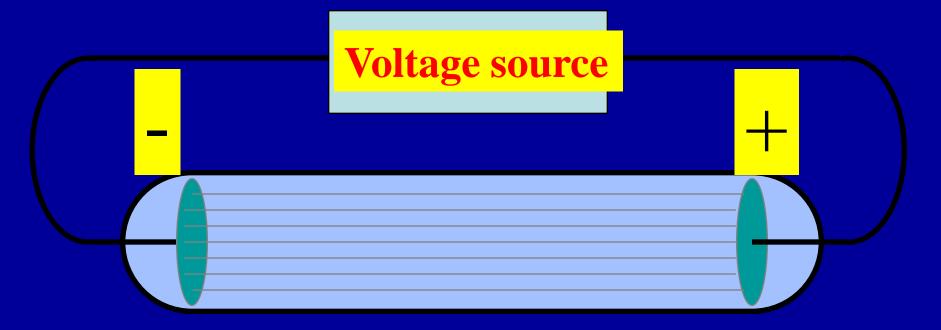
Carbon monoxide

$$\frac{O}{C} = \frac{1}{1}$$

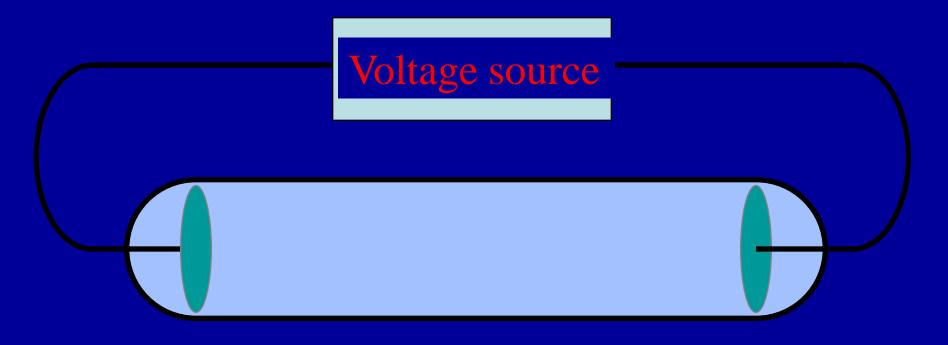

$$=\frac{2}{1}$$

2.2 The Structure of the Atom

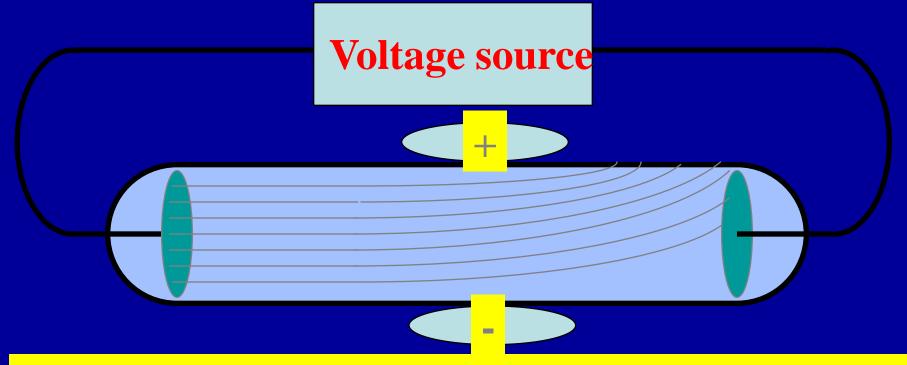

- Atoms are the basic unit of an element that can enter into a chemical reaction
- By mid 1800's it became evident that atoms are divisible - there is an internal structure to the atom. (subatomic particles)


Discovery of the electron

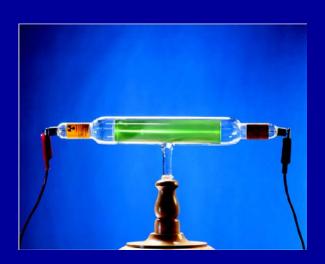
- When high voltage is applied to a cathode ray tube a ray emanates from the cathode is called cathode ray.
- If the cathode rays are charged they should be deflected by an electric and magnetic fields.



When high voltage is applied to the tube a ray emanates from the cathode is called cathode ray.



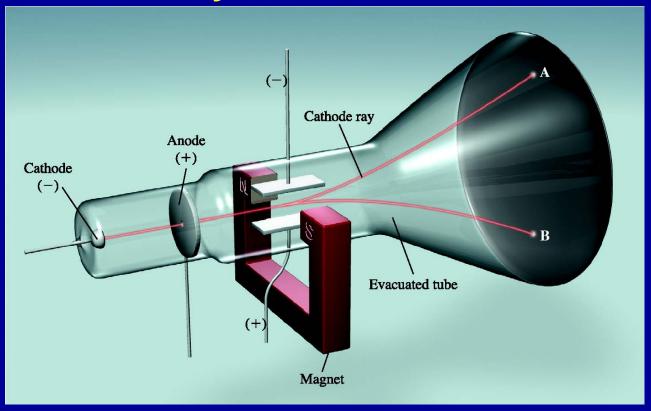
Passing an electric current makes a beam appear to move from the negative to the positive end.



By adding an electric field

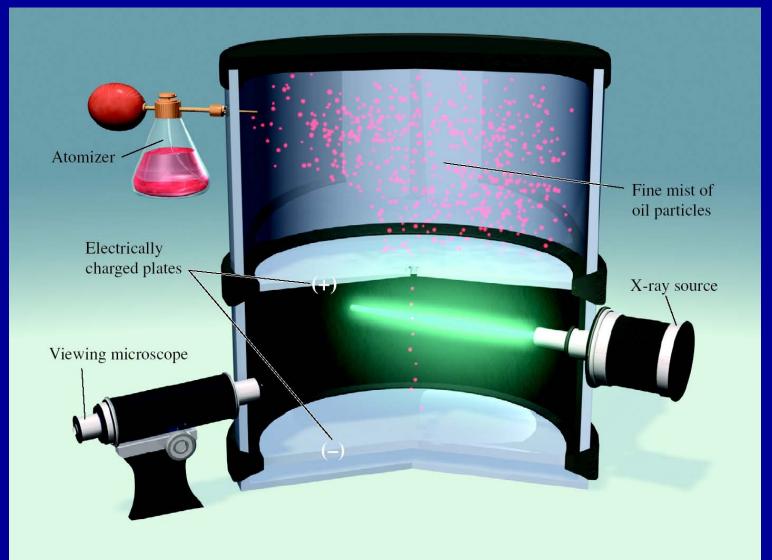
 By adding an electric field, he found that the moving particles were negatively charged

Effect of a Magnetic Field on a Cathode Ray



 J. J. Thomson - postulated the existence of electrons using cathode ray tubes.

Discovery of the electron


- J.J. Thomson

- discovered the ratio of the electric charge to the mass of an individual electron using the cathode ray tube
- $(-1.76 \times 10^8 \text{ C/g})$; C = coulomb

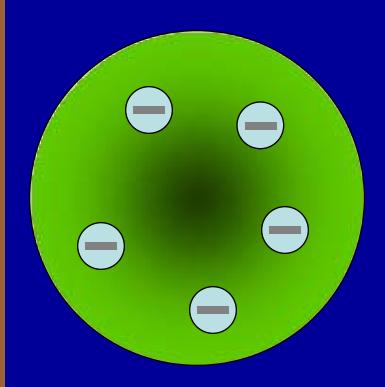
Results of Thomson Experiment

- Electrons are produced from electrodes made from various types of metals, all atoms must contain electrons.
- Since atoms are electrically neutral, they must contain positively charged particles.

- Millikan Experiment
 - Millikan determined the charge on an electron
 - -1.66022 x 10⁻¹⁹ C

- The mass of the electron could be derived from
 - Millikan's charge
 - -1.66022 x 10⁻¹⁹ C
 - Thomson's charge to mass ratio

$$-1.76 \times 10^8$$
 C/g

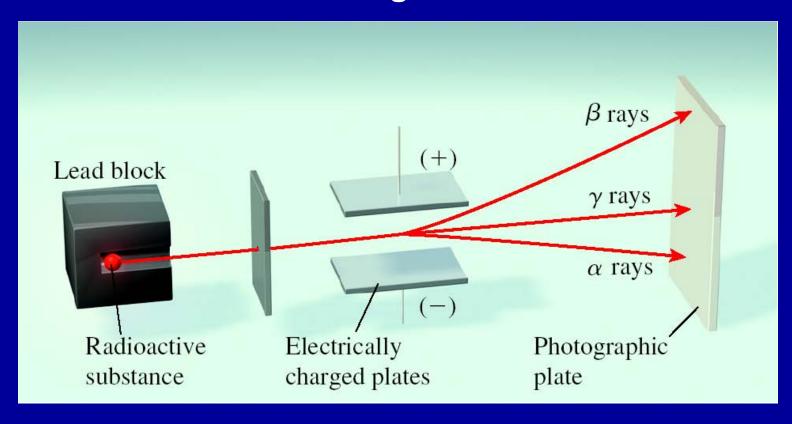

mass of an electron =
$$\frac{\text{charge}}{\text{charge/mass}}$$

$$\frac{-1.6022 \times 10^{-19} \,\mathrm{C}}{-1.76 \times 10^8 \,\mathrm{C/g}} = 9.10 \times 10^{-28} \,\mathrm{g}$$

mass of electron

Thomson's Model

- Atom is consisted of a diffuse cloud of positive charge with negative electrons embedded randomly
- Atom was like plum pudding.
- Thomson believed that the electrons were like plums embedded in a positively charged "pudding," thus it was called the "plum pudding" model.



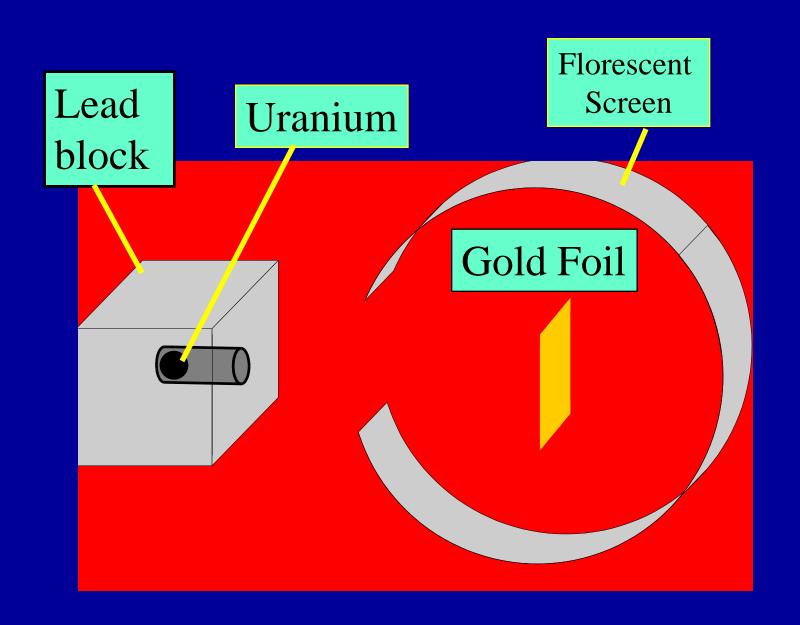
Radioactivity – historical prespective

- 1895 Wilhelm Röentgen German physicist
 - Noticed that cathode rays caused glass and metal to emit another type of ray
 - He named the rays "X rays" because of their mysterious nature
 - -Caused fluorescence
 - -Were not deflected by a magnet

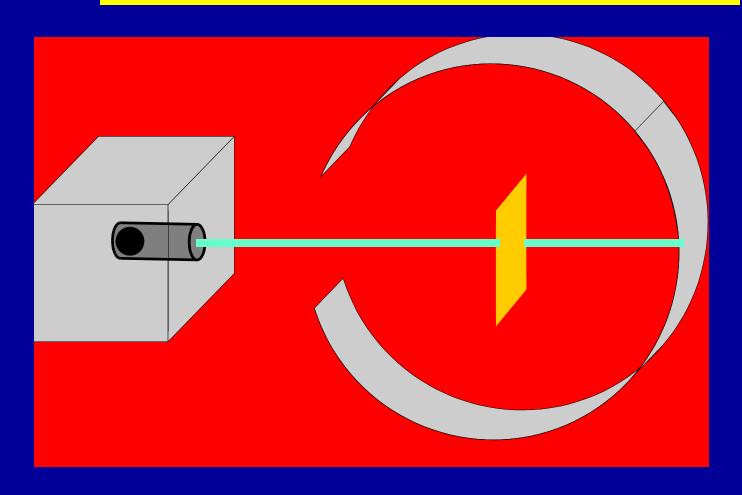
- Antoine Becquerel French physicist
 - Accidentally discovered that uranium darkened photographic film
- Marie Curie (a student of Becquerel) suggested name "radioactivity"
 - Rays were highly energetic and not deflected by a magnet
 - However, rays arose spontaneously unlike the rays discovered by Röentgen

- Radioactive material, a substance that spontaneously emits radiation
- Type of radioactivity
 - Alpha (α) positively charged particles
 - Beta (β) electrons
 - Gamma (γ) no charge and are unaffected by external electric or magnetic fields.

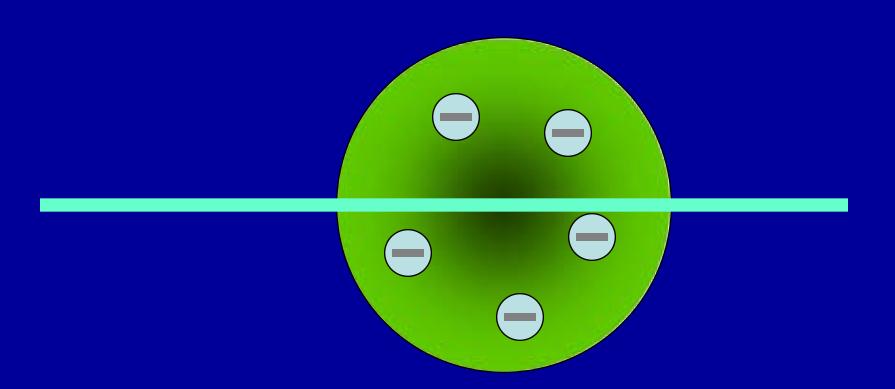
Radiations produced from radioactivity


- Three types of radiation were known:
 - alpha- helium nucleus (+2 charge, 7300 times that of the electron)
 - beta- high speed electron
 - gamma- high energy light

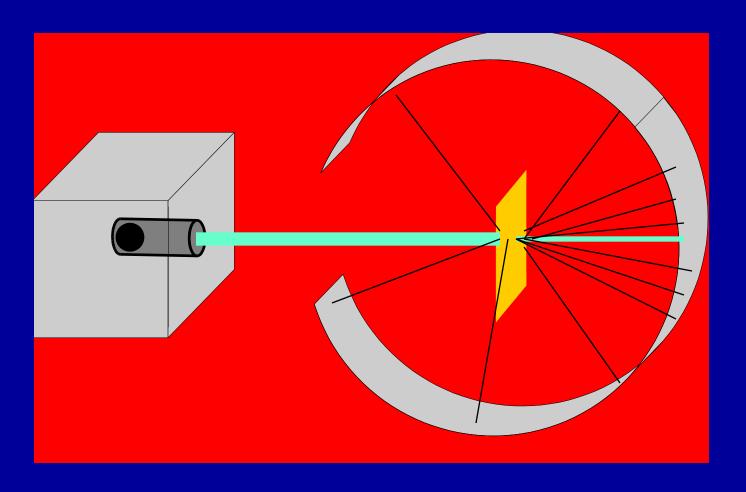
The Nuclear Atom


- 1900's atoms consisted of positively charged matter with electrons scattered throughout (plum-pudding model by Thomson)
- 1910 Rutherford performed "gold-foil" experiment.
 - Proposed a new model of the atom
 - Nucleus contained
 - –Positive charges (later called protons)
 - -Most of the mass of the atom

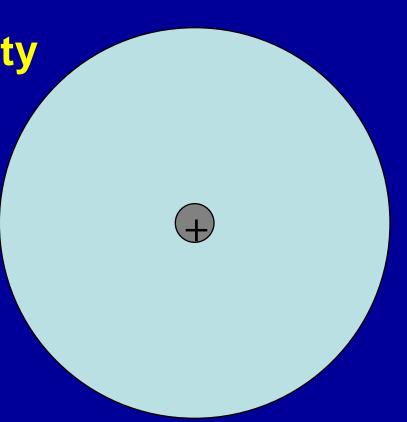
The nuclear atom Rutherford's Experiment

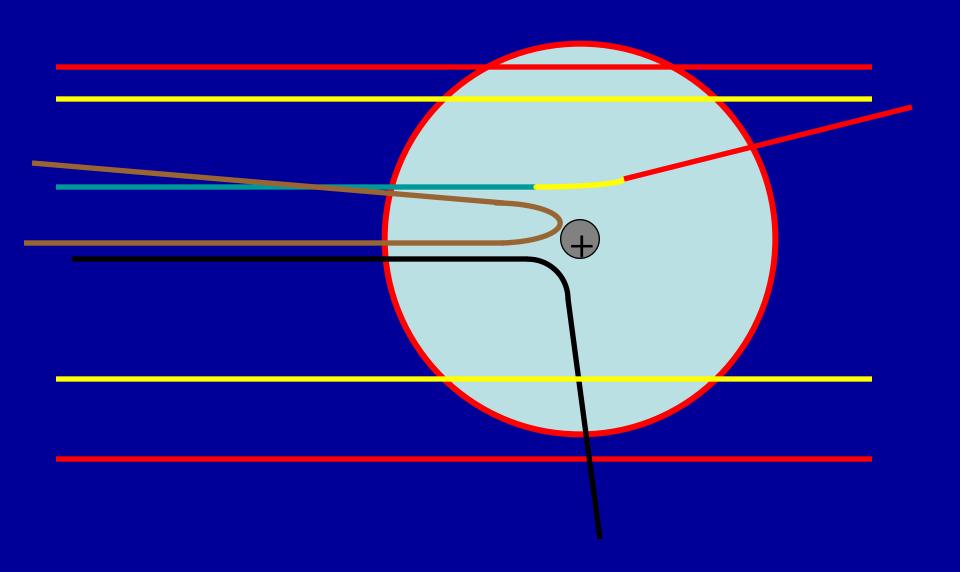

- Aimed at testing Thomson's plum pudding model
- Used uranium to produce alpha particles.
- Alpha particles are directed at gold foil through hole in lead block.
- Since the mass is evenly distributed in gold atoms alpha particles should go straight through.

What he expected


Because

Because, he thought the mass was evenly distributed in the atom.


What he got


How he explained it

Atom is mostly empty

- Small dense, positive particle at center.
- Alpha particles are deflected by it if they get close enough.

Proof for nuclear atom

Nuclear atom model

According to Rutherford:
 The atom consists of a dense center of positive charge (Nucleus) with electrons moving around it at distance that is large relative to the nuclear radius

- Rutherford's model left one problem:
 - If H has a mass of 1
 - Then He should have a mass of 2
 - But its mass is 4!
- 1932 James Chadwick
 - Discovered the neutron
 - Third subatomic particle
 - Neutral charge

Mass and charge of nuclear particles

(g)

Mass (ſ
	Mass (

Electron 9.11X10⁻³¹

Proton 1.67X10⁻²⁷

Neutron 1.67X10⁻²⁷

Charge

-1

+1

None

2.3 Atomic Number, Mass Number and Isotopes

- The chemical identity of an atom can be determined solely from its atomic number
- Atomic number (Z) number of protons in the nucleus of each atom of an element
 - -Also indicates number of electrons in the atom—since atoms are neutral

 Mass number (A) - total number of neutrons and protons present in the nucleus

mass number (A) = number of protons (Z) + number of neutrons

Standard notation:

Mass number (number of protons + neutrons)

Atomic number— (number of protons)

Isotopes

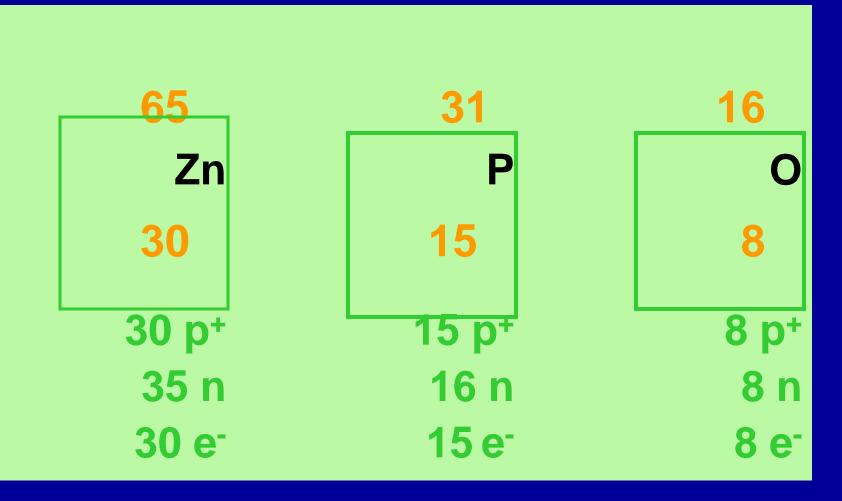
- All atoms are not identical
 (as had been proposed by Dalton)
- Atoms of the same element have same atomic number (Z) but different mass numbers (A)
- Isotopes of Hydrogen
 - Hydrogen (protium)

- Deuterium

Tritium

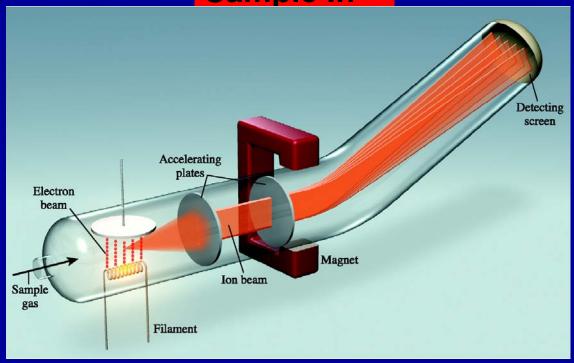
Symbols

Mass number

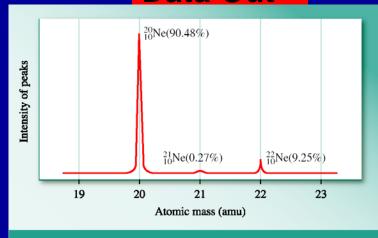

A

Atomic number

23 Na


Na-23

More Atomic Symbols



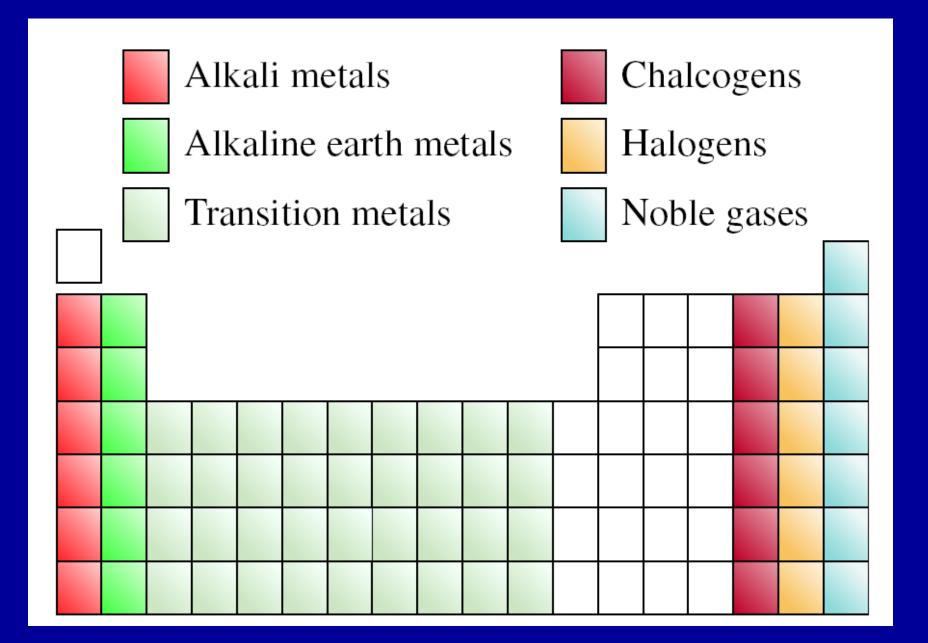
Mass Spectrometery

Sample In

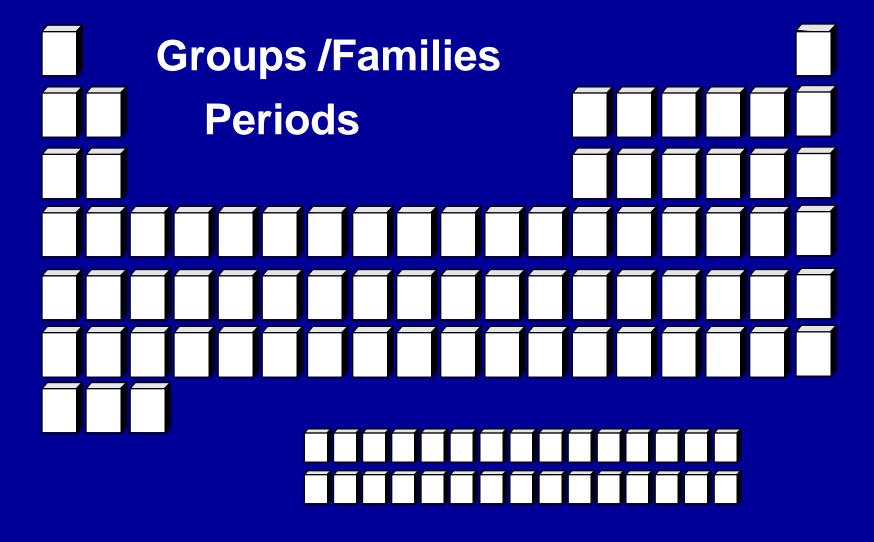
Data Out

2.4 The Periodic Table

- Periods horizontal rows
- Families (Groups) vertical columns
 - Elements in the same family have similar chemical and physical properties
- Arranged in order of increasing atomic number


The Modern Periodic Table

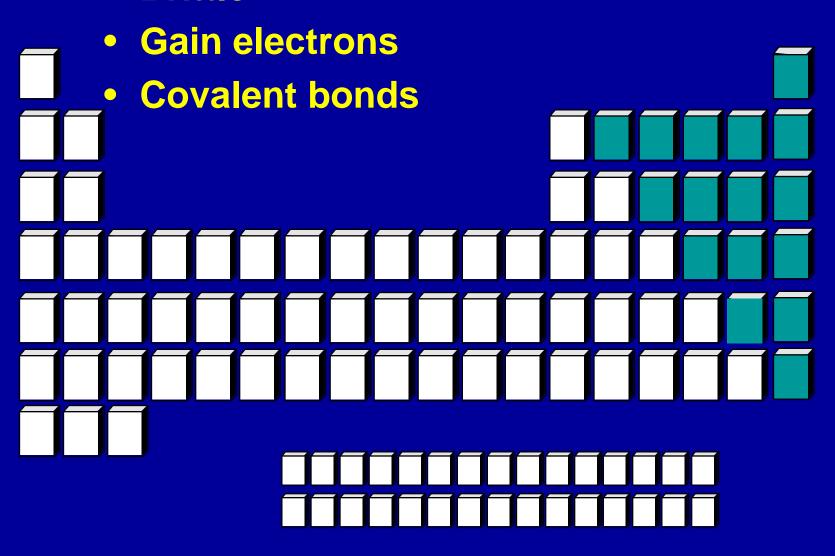
1A 1	 																8A 18
H Hydrogen	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	Helium
Lithium	Be Beryllium											5 B Boron	C Carbon	7 N Nitrogen	Oxygen	9 F Fluorine	10 Ne Neon
Na Sodium	Mg Magnesium	3B 3	4B 4	5B 5	6B 6	7 B 7	8	—8B—	10	1B 11	2B 12	Al Al Aluminum	Silicon	Phosphorus	16 S Sulfur	Cl Chlorine	18 Ar Argon
19 K Potassium	Calcium	Sc Scandium	Ti Titanium	Vanadium	Cr Chromium	Mn Manganese	Fe Iron	Co Cobalt	28 Ni Nickel	Cu Copper	Zn Zinc	Gallium	Germanium	AS Arsenic	Se Selenium	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium	Y Yttrium	Zr Zirconium	Nb Niobium	Mo Molybdcnum	Tc Tc	Ruthenium	Rh Rhodium	Palladium	47 Ag Silver	Cd Cadmium	49 In Indium	Sn Tin	Sb Antimony	Te Tellurium	53 I Iodine	Xe Xe Xcnon
55 Cs Cesium	56 Ba Barium	71 Lu Lutetium	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold	Hg Mercury	81 Tl Thallium	Pb Lead	Bismuth	Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	Ra Radium	103 Lr Lawrencium	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	Roentgenium	112 —	113 	114 —	115 —	116 — -	117	118 —


Lanthanum	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	Sm Samarium	Europium	64 Gd Gadolium	Tb Terbium	Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium
Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	No Nobelium

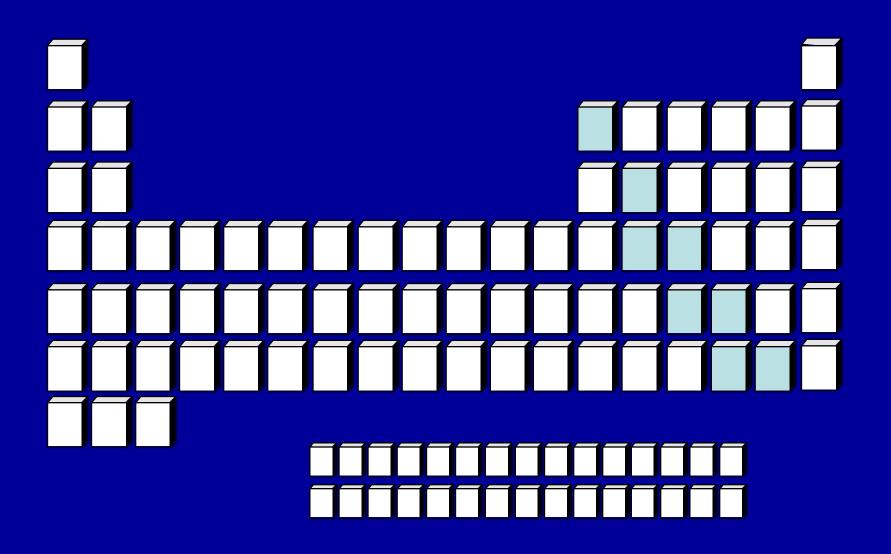
- Metals good conductors of heat and electricity (majority of elements on the table, located to the left of the stair step)
- Nonmetals nonconductors (located in upper right-hand corner)
- Metalloids in between metals and nonmetals (those that lie along the separation line)

Groups (Families) on the Periodic Table

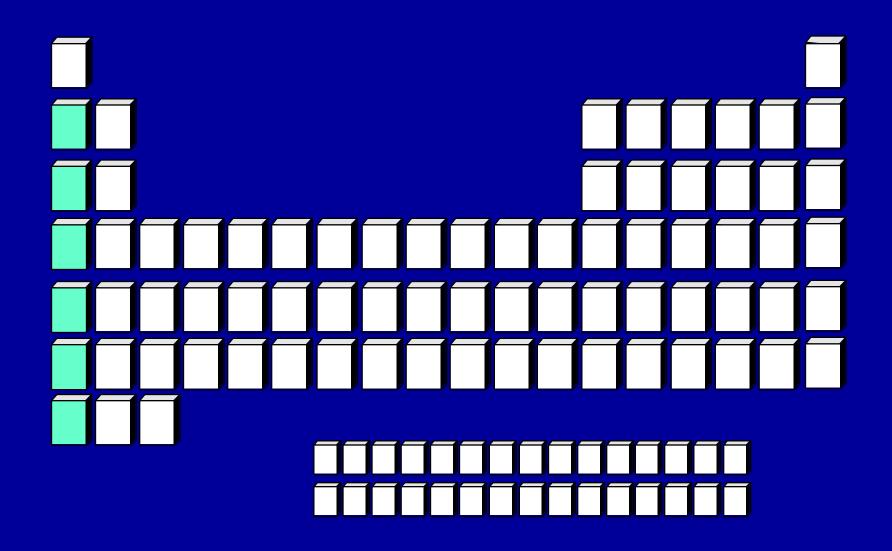
Periodic Table

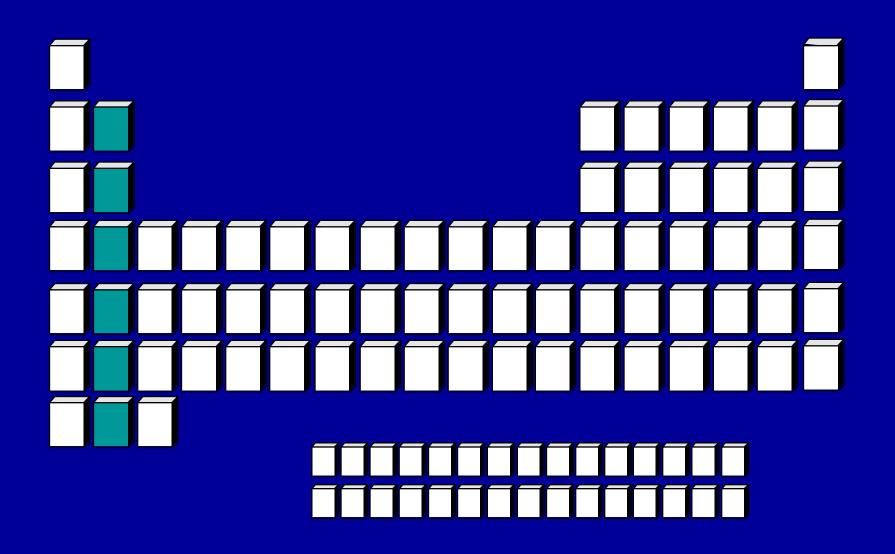


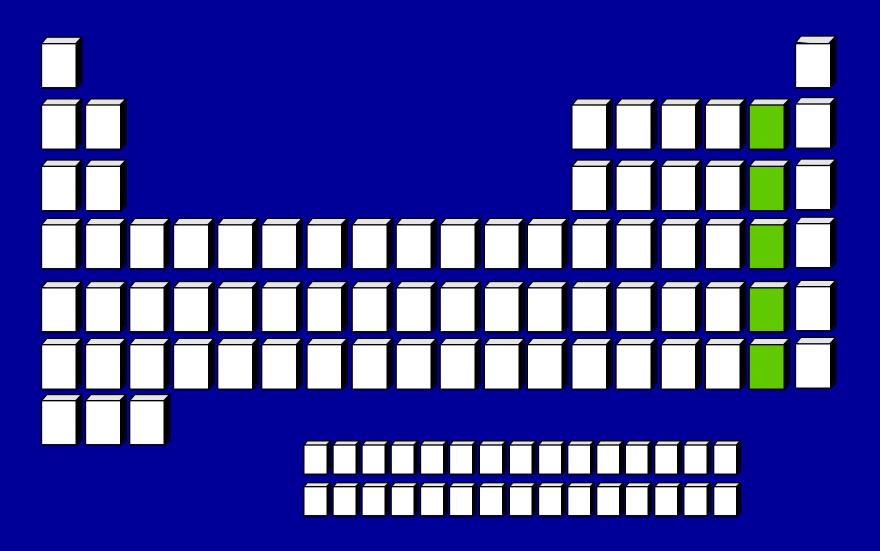
Metals

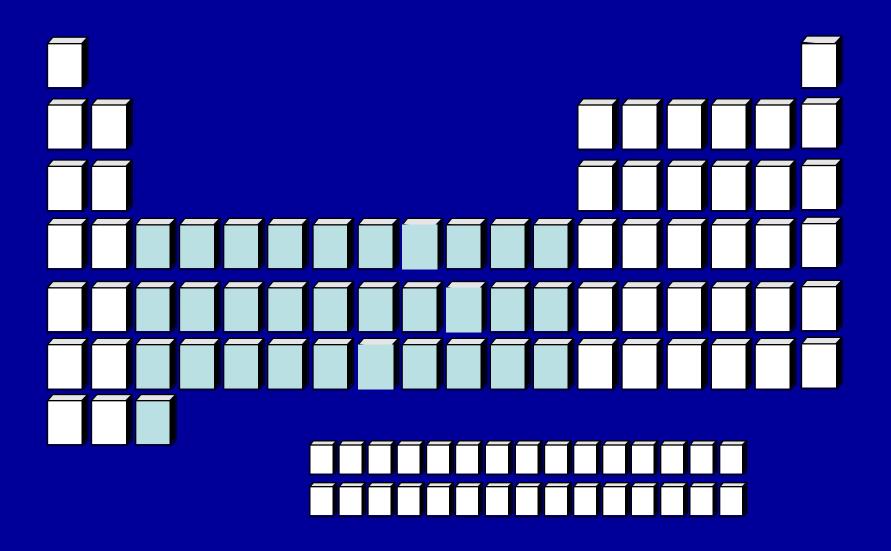

 Conductors **Lose electrons Malleable and ductile**

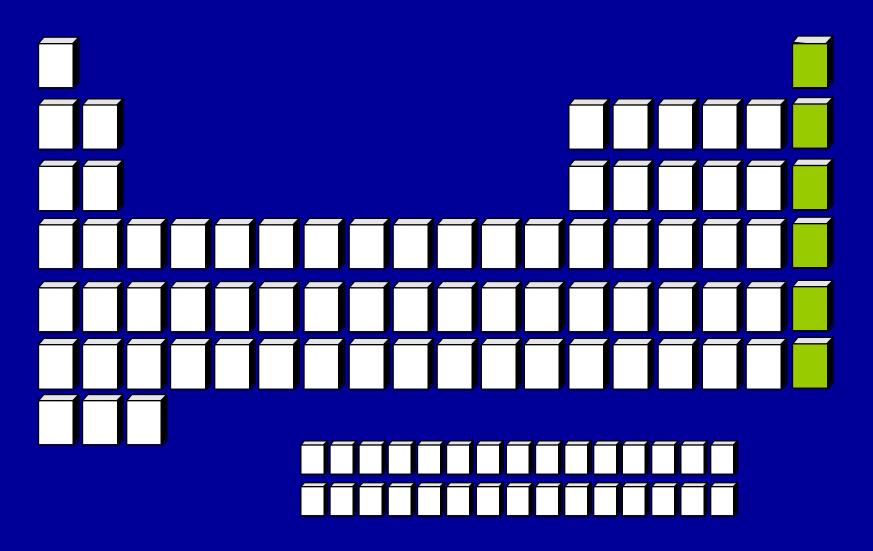
Nonmetals

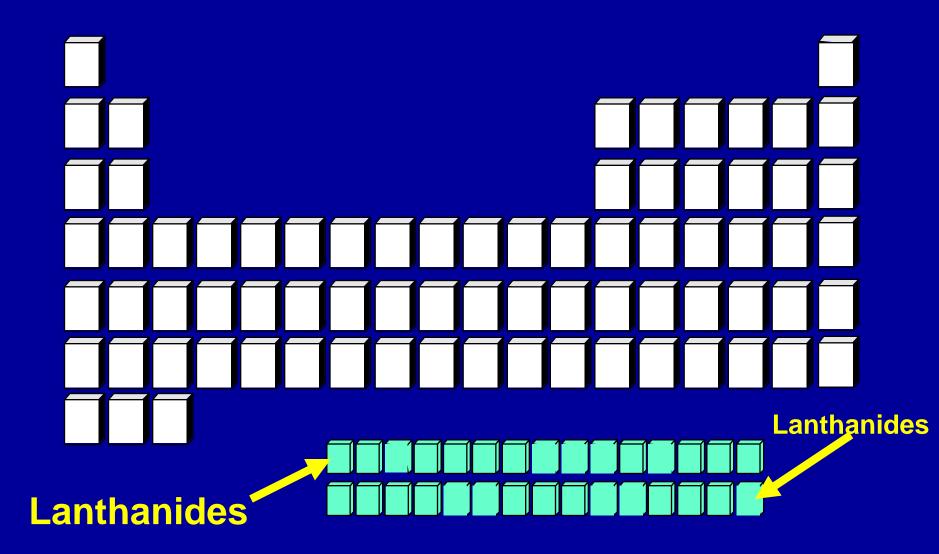

Brittle

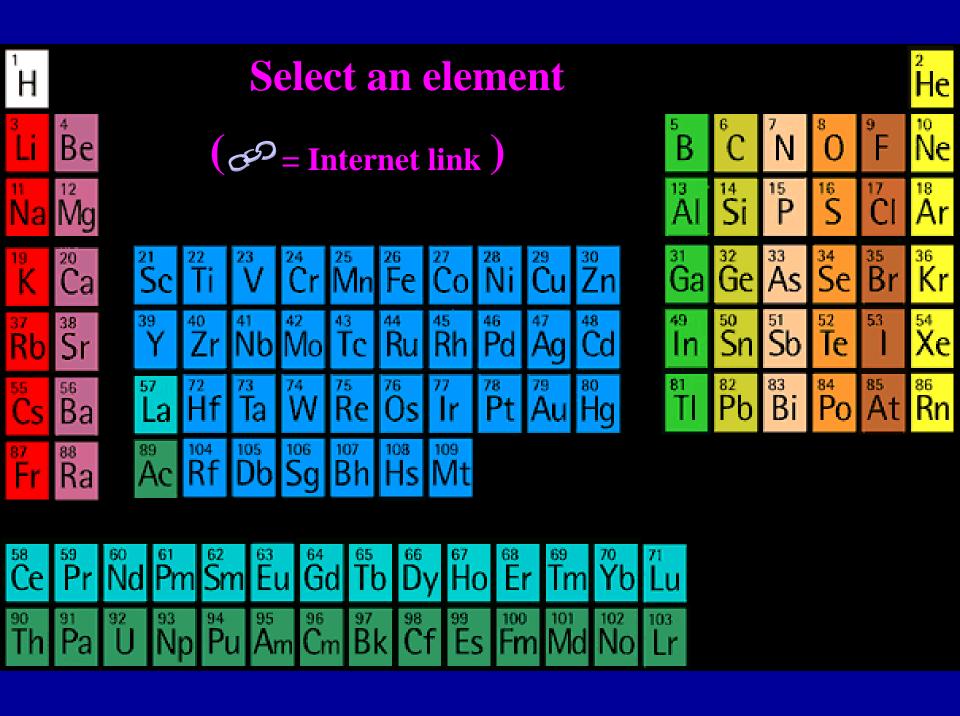

Semi-metals or Metalloids


Alkali Metals


Alkaline Earth Metals


Halogens


Transition metals



Noble Gases

Inner Transition Metals

1A 1																	8A 18
1 H	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 C l	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Z n	31 Ga	32 Ge	33 As	34 Se	35 B r	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 R n
87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112		114		116		
				=0.	*=ò	7.0	· > à	2.5		:61	ے در		جة فر		c ô	-	
	Metal	5	57 La	58 C e	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
	Metal	loids	89 A c	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	
	Nonn	netals															

2.5 The Atomic Mass Scale and Average atomic Mass

- Atomic mass is the mass of the atom in atomic mass units (amu)
- Atomic mass unit is defined as a mass exactly equal to one-twelfth the mass of one carbon-12 atom
- Carbon-12 (12 amu) provides the standard for measuring the atomic mass of the other elements

- Average atomic mass
 - Masses on the periodic table are not whole numbers.
 - Mass spectrometer provides information about percentages of different isotopes of each element.
 - Periodic table mass is the weighted average of all of the isotopes of each element

- Oxygen is the most abundant element both in the Earth's crust and in the human body
- atomic masses of its three stable isotopes, ¹⁶O (99.757%), ¹⁷O (0.038%), and ¹⁸O (0.205%), are 15.9949 amu, 16.9999 amu, and 17.9999amu, respectively. Calculate the average atomic mass of oxygen using the relative abundances given in parentheses.

Steps:

- 1. Convert each % into decimal abundance. (divide by 100)
- 2. Multiply mass of each isotope by its fractional abundance.
- 3. Add the contributions together.

```
(0.99757)(15.9949 \text{ amu}) +

(0.00038)(16.9999 \text{ amu}) +

(0.00205)(17.9999) = 15.999 \text{ amu}.
```

*To four significant figures, this is the same as the mass given in the periodic table in the book: 16.00

Example

The atomic masses of the two stable isotopes of copper, ⁶³Cu (69.17%) and ⁶⁵Cu (30.83%), are 62.929599 amu and 64.927793 amu, respectively. Calculate the average atomic mass of copper.

```
(0.6917)(62.929599 amu) + (0.3083)(64.927793 amu) + = 63.55 amu.
```

2.6 Molecules and Molecular Compounds

- Molecule combination of at least two atoms in a specific arrangement held together by chemical bonds
 - May be an element or a compound
 - -H₂, hydrogen gas, is an element
 - -H₂O, water, is a compound

- Diatomic molecules:
 - Homonuclear (2 of the same atoms)
 - Examples: H₂, N₂, O₂, F₂, Cl₂, Br₂, and l₂

- Heteronuclear (2 different atoms)
 - Examples: CO and HCI

Polyatomic molecules:

- Contain more than 2 atoms
- Most molecules
- May contain more than one element
- Examples: ozone, O₃; white phosphorus, P₄; water, H₂O, and methane (CH₄)

- Molecular formula shows exact number of atoms of each element in a molecule
 - -Subscripts indicate number of atoms of each element present in the formula.
 - Example: $C_{12}H_{22}O_{11}$

- Allotrope one of two or more distinct forms of an element
 - -Examples: oxygen, O₂ and ozone, O₃; diamond and graphite (allotropic forms of carbon)
- Structural formula shows the general arrangement of atoms within the molecule.

H-O-H

- Naming molecular compounds
 - Binary Molecular compounds
 - Composed of two nonmetals
 - Name the first element
 - Name the second element changing ending to "-ide"
 - Use prefixes to indicate number of atoms of each element

TABLE 2.2

Greek Prefixes

Prefix	Meaning	Prefix	Meaning
Mono-	1	Hexa-	6
Di-	2	Hepta-	7
Tri-	3	Octa-	8
Tetra-	4	Nona-	9
Penta-	5	Deca-	10

TABLE 2.3

Some Compounds Named Using Greek Prefixes

Compound	Name	Compound	Name
CO	Carbon monoxide	SO_3	Sulfur trioxide
CO_2	Carbon dioxide	NO_2	Nitrogen dioxide
SO_2	Sulfur dioxide	N_2O_5	Dinitrogen pentoxide

Name the following:

NO₂

nitrogen dioxide

 N_2O_4

dinitrogen tetraoxide

Write formulas for the following: Diphosphorus pentoxide

P₂O₅
Sulfur hexafluoride
SF₆

Common Names

B₂H₆diborane

SiH₄ silane

NH₃ ammonia

PH₃ phosphine

H₂O water

H₂S hydrogen sulfide

- Acid a substance that produces hydrogen ions (H+) when dissolved in water
- Binary acids:
 - Many have 2 names. It is composed of :
 - Pure substance
 - Aqueous solution
 - -Example: HCI, hydrogen chloride, when dissolved in water it is called hydrochloric acid

- Naming binary acids
 - Remove the "–gen" ending from hydrogen (leaving hydro–)
 - -Change the "-ide" ending on the second element to "-ic"
 - -Combine the two words and add the word "acid."

```
Name the following:
HBr
 hydrogen bromide hydrobromic acid
H<sub>2</sub>S
 hydrogen sulfide
                      hydrosulfuric acid
Write formulas for the following:
Hydrochloric acid
     HCI(aq)
Hydrofluoric acid
     HF(aq)
```

- Organic compounds contain carbon and hydrogen (sometimes with oxygen, nitrogen, sulfur and the halogens.)
 - Hydrocarbons contain only carbon and hydrogen
 - Alkanes simplest examples of hydrocarbons
 - Many derivatives of alkanes are derived by replacing a hydrogen with one of the functional groups.
 - Functional group determines chemical properties

TABLE 2.5	Formulas, Names	, and Models of Some Simple Alkanes
Formula	Name	Model
$\mathrm{CH_4}$	Methane	⊸
C_2H_6	Ethane	}
$\mathrm{C_3H_8}$	Propane	
$\mathrm{C_4H_{10}}$	Butane	
C₅H ₁₂	Pentane	
C_6H_{14}	Hexane	a de de de
C ₇ H ₁₆	Heptane	- Bankar
C_8H_{18}	Octane	- A A A A A A
C_9H_{20}	Nonane	man and an
$C_{10}H_{22}$	Decane	

Organic Functional Groups

Name	Functional Group	Model
Alcohol	-ОН	
Aldehyde	-СНО	
Carboxylic acid	-соон	
Amine	$-NH_2$	

• Empirical (simplest) formulas reveal the elements present and in what whole-number ratio they are combined.

Molecular(explicit)
Empirical(simplest)

 H_2O_2 HO N_2H_4 NH_2

 H_2O H_2O

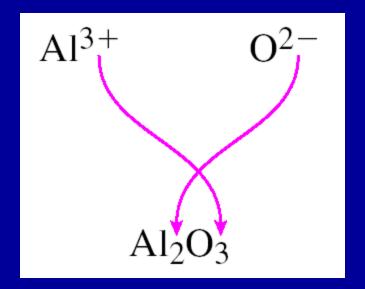
TABLE 2.7	Molecular and Empirical Formu	ılas		
Compound	Molecular Formula	Model	Empirical Formula	Model
Water	$\mathrm{H}_2\mathrm{O}$		H_2O	
Hydrogen perox	ide H_2O_2	3	НО	— >
Ethane	$\mathrm{C_2H_6}$	3	CH_3	
Propane	$\mathrm{C_3H_8}$	8 8	C_3H_8	3
Acetylene	C_2H_2	○ • • ○ ○	СН	•
Benzene	$\mathrm{C_6H_6}$		СН	•

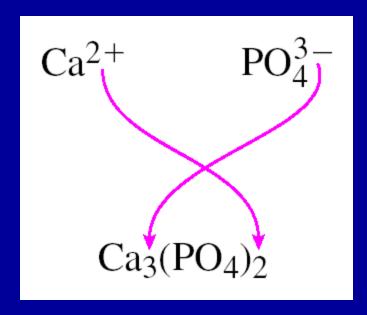
2.7 lons and lonic Compounds

- lon an atom or group of atoms that has a net positive or negative charge
- Monatomic ion one atom with a positive or negative charge
- Cation ion with a net positive charge due to the loss of one or more electrons
- Anion ion with a net negative charge due the gain of one or more electrons

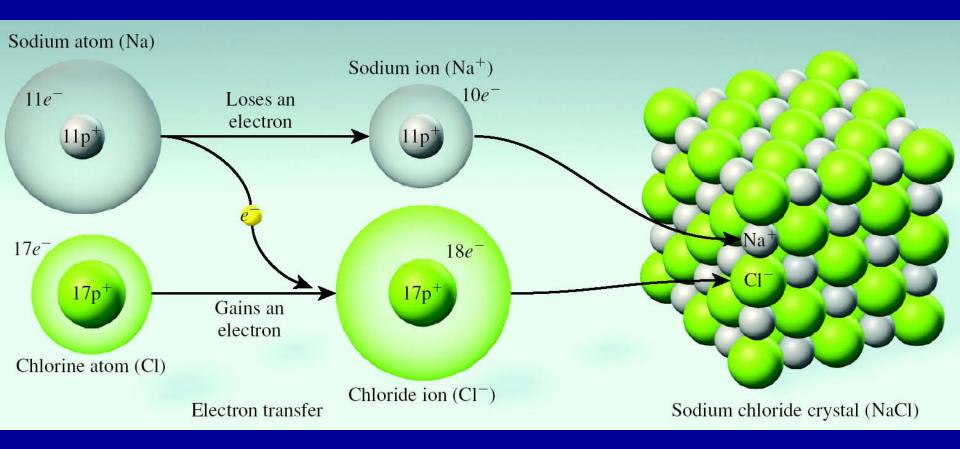
Common Monatomic Ions

1A 1																	8A 18
	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	
Li ⁺													C ⁴ -	N ³⁻	O ²⁻	F-	
Na ⁺	Mg ²⁺	3B 3	4B 4	5B 5	6B 6	7B 7	8	-8B-	10	1B 11	2B 12	Al ³⁺		P ³ -	S ² -	Cl-	
K+	Ca ²⁺				Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺	Ni ²⁺ Ni ³⁺	Cu ⁺ Cu ²⁺	Zn ²⁺				Se ²⁻	Br-	
Rb ⁺	Sr ²⁺									Ag ⁺	Cd ²⁺		Sn ²⁺ Sn ⁴⁺		Te ²⁻	I-	
Cs+	Ba ²⁺										Hg ₂ ²⁺ Hg ²⁺		Pb ²⁺ Pb ⁴⁺				


Naming ions


- Cations from A group metals
 - Name the element and add the word "ion"
 - Example: Na+, sodium ion
- Cations from transition metals with some exceptions
 - Name element
 - Indicate charge of metal with Roman numeral
 - Add word "ion"
 - Example: Cu²⁺,copper(II) ion

- Anions
 - Name the element and modify the ending to "-ide"
 - Example: Cl-, chloride
- Polyatomic ions ions that are a combination of two or more atoms
 - Notice similarities number of oxygen atoms and endings for oxoanions
 - Nitrate, NO₃⁻ and nitrite, NO₂⁻


TABLE 2.9	Common Polyatomic Ions
Name	Formula/Charg
Cations	
Ammonium	NH_4^+
Hydronium	$\mathrm{H_{3}O}^{+}$
Mercury(I)	${ m Hg}_2^{2^+}$
Anions	
Azide	N_3^-
Carbonate	CO_3^{2-}
Chlorate	CIO ₃
Chlorite	${ m ClO}_2^-$
Chromate	CrO_4^{2-}
Cyanide	CN^-
Dichromate	$\mathrm{Cr_2O_7^{2-}}$
Dihydrogen phos	sphate $H_2PO_4^-$
Hydrogen carbon	nate or bicarbonate HCO ₃
Hydrogen phosp	hate HPO_4^{2-}
Hydrogen sulfate	e or bisulfate HSO ₄
Hydroxide	OH^-
Hypochlorite	ClO ⁻
Nitrate	NO_3^-
Nitrite	NO_2^-
Oxalate	$C_2O_4^{2-}$
Perchlorate	ClO_4^-
Permanganate	$\mathrm{MnO_4^-}$
Peroxide	O_2^{2-}
Phosphate	PO ₄ ³⁻
Phosphite	PO_3^{3-}
Sulfate	SO_4^{2-}
Sulfite	SO_3^{2-}
Thiocyanate	SCN ⁻

- lonic compounds represented by empirical formulas
 - Compound formed is electrically neutral
 - -Sum of the charges on the cation(s) and anion(s) in each formula unit must be zero
 - Examples:

Formation of an Ionic Compound

Write empirical formulas for

- Aluminum and bromide AIBr₃
- barium and phosphate $Ba_3(PO_4)_2$
- Magnesium and nitrate
 Mg(NO₃)₂
- Ammonium and sulfate (NH₄)₂SO₄

- Naming ionic compounds
 - Name the cation
 - Name the anion
 - Check the name of cation
 - If it is an A group metal you are finished
 - If it is a transition metal, with some exceptions, add the appropriate Roman numeral to indicate the positive ionic charge

Write names for the following:

- KMnO₄
 potassium permanganate
- Sr₃(PO₄)₂ strontium phosphate
- Co(NO₃)₂
 cobalt(II) nitrate
- FeSO₄
 iron(II) sulfate

Oxoacids

 When writing formulas, add the number of H⁺ ions necessary to balance the corresponding oxoanion's negative charge

Naming formulas

- If the anion ends in "-ite" the acid ends with "-ous" acid
- If the anion ends in "-ate" the acid ends in "-ic" acid

Name the following:

- H₂SO₃
- sulfurous acid
- HCIO
- hypochlorous acid
- H₃PO₄

phosphoric acid

Write formulas for the following:

- Perchloric acid
 HCIO₄
- Nitric acid HNO₃

- Hydrates compounds that have a specific number of water molecules within their solid structure
 - Hydrated compounds may be heated to remove the water forming an anhydrous compound
 - Name the compound and add the word hydrate. Indicate the number of water molecules with a prefix on hydrate.
 - Example: CuSO₄ 5 H₂O
 - Copper (II) sulfate pentahydrate

TABLE 2.10

 NH_3

 CO_2

NaCl

 N_2O

CaCO₃

NaHCO₃

 $Mg(OH)_2$

 $MgSO_4 \cdot 7H_2O$

Common and Systematic Names of Some Familiar Inorganic

	Compounds	
Formula	Common Name	Systematic Name
H_2O	Water	Dihydrogen monoxide

Ammonia

Dry ice

Salt

Laughing gas

Marble, chalk, limestone Baking soda

Epsom salt Milk of magnesia

Solid carbon dioxide Sodium chloride

Dinitrogen monoxide

Trihydrogen nitride

Calcium carbonate

Sodium hydrogen carbonate

Magnesium sulfate heptahydrate Magnesium hydroxide

Compound Molecular Ionic Cation: metal or NH₄⁺ Binary compounds Anion: monatomic or of nonmetals polyatomic Naming Cation has Cation has more only one charge. than one charge. • Use prefixes for both elements present. Alkali metal cations Other metal cations (Prefix mono-• Alkaline earth metal usually omitted for cations • Ag^+ , Al^{3+} , Cd^{2+} , Zn^{2+} the first element.) • Add –*ide* to the root of second element. Naming Naming • Name metal first. • Name metal first. • If monatomic anion, · Specify charge of add *–ide* to root of metal cation with element name. Roman numeral • If polyatomic anion, in parentheses. use name of anion. • If monatomic anion. add -ide to root of element name. • If polyatomic anion, use name of anion.

Learning outcomes

- Atomic theory parts of the atom; theories; laws
- Types of radiation
- Atomic number and mass number
- Isotopes
- Periodic table; families and periods; metals, nonmetals and metalloids

Learning outcomes

- Average atomic mass
- Naming and writing formulas for
 - Binary molecular compounds
 - Binary acids
 - lonic compounds
 - Oxoacids
 - Hydrates