

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

CHEMISTRY DEPARTMENT

EXAM

THE 1ST MAJOR EXAM

COURSE

CHEM101 - 051

TEST CODE NUMBER

000

STUDENT NUMBER:

NAME :

SECTION NUMBER:

INSTRUCTIONS

- 1. Type your student number, name, and section number on the *EXAM COVER* page.
- 2. Type your student number, section number, your name, and your test code number on your *EXAM ANSWER* form.
- 3. With your pencil, bubble your student number, your section number, and test code number on the *EXAM ANSWER* form.
- 4. With your pencil, bubble your answer's selections on the *EXAM ANSWER* form. You must not give more than *ONE* answer per question.
- 5. Return the *EXAM* booklet and *ANSWER* form to the proctor of the exam when you have finished.

Important constants

Gas Constant (R)	= 0.0821	L.atm/(mol.K)		
	= 8.31	J/(mol.K)		
	= 8.31 x 10 ⁷	g.cm ² /(sec ² .mol.K)		
Planck's Constant (h)	= 6.626 x 10 ⁻³⁴	J.sec/particle		
	= 6.626 x 10 ⁻³⁴	kg.m ² /(sec.particle)		
Velocity of light (c)	= 2.998 x 10 ⁸	m/sec		
Avogadro's number (N)	= 6.022 x 10 ²³	particles/mol		
Bohr's Constant (R _H)	= 2.179 x 10 ⁻¹⁸	J/particle		
Faraday (F)	= 96485	Coulombs		
Specific heat of H ₂ O	= 4.18	I/(g.⁰C)		

H H I ¹⁰⁰⁷⁹	3 4 Li Be	11 12 Na Mg 22.990 24.305 I	19 20 K Ca 39.098 40.078 4	37 38 Rb Sr 85.468 87.62 8	55 56 Cs Ba]	87 88 Fr Ra (223) (226)		
		III B	21 Sc 44.956	39 ¥ 88.906	57 La* ^{138.91}	89 A c ** (227)		
		IV B	22 Ti ^{47.867}	40 Zr 91.224	72 Hf ^{178.49}	104 Rf (261)	L	
		VB	23 V 50.942	41 Nb ^{92.906}	73 Ta 180.95	105 Db (262)	58 *Ce 140.12	90
		VIB	24 Cr 51.996	42 Mo ^{95.94}	74 W 183.84	106 Sg (263)	59 Pr 140.91	91
		VIIB	25 Mn 54.938	43 Tc	75 Re 186.21	107 Bh (264)	60 Nd 144.24	92
			26 Fe 55.845	44 Ru 101.07	76 OS ^{190.23}	108 Hs ²⁶⁵⁾	61 Pm (145)	93
			27 C0 58.933	45 Rh 102.91	77 Ir 192.22	109 Mt (268)	62 Sm ^{150.36}	94
		$\left[\right]$	28 Ni 58.693	46 Pd ^{106.42}	78 Pt ^{195.08}	110 Uun (269)	63 Eu ^{151.96}	95
		18	29 Cu 63.546	47 Ag 107.87	79 Au 196.97	111 Uuu (272)	64 Gd 157.25	96
		IIB	30 Zn 65.39	48 Cd ¹¹²⁴¹	80 Hg ^{200.59}	112 Uub (277)	65 Tb ¹⁵⁸⁹³	76
V II	5 B 10.811	13 Al 26.982	31 Ga ^{69.723}	49 In ^{114.82}	81 TI ^{204.38}	113	66 Dy 162.50	98
V A	6 C 12.011	14 Si 28.086	32 Ge 72.61	50 Sn ^{118.71}	82 Pb ^{207.2}	114	67 Ho 165.93	66
ΥΛ	7 N 14.007	15 P 30.974	33 As 74.922	51 Sb 121.76	83 Bi ^{208.98}	115	68 Er 167.26	100
VI V	8 0 15.999	16 S 32.066	34 Se ^{78.96}	52 Te ^{127.60}	84 Po (209)	116	69 Tm 16893	101
H MIN	9 F 18.998	17 CI 35.453	35 Br 79.904	53 I ^{126.90}	85 At (210)	117	70 Yb 173.04	102
2 He	10 Ne ^{20.180}	18 Ar 39.948	36 Kr ^{83.80}	54 Xe ^{131.29}	86 Rn (222)	118	71 Lu 174.97	103

CHEM 101 First Major Exam-051-000

PERIODIC TABLE OF THE ELEMENTS

- 1. Complete the following sentence. A scientific law is:
 - A) a statement describing a relationship between phenomena that is always the same under the same conditions.
 - **B)** a tentative explanation for a set of observations that can be tested by further experimentation.
 - **c)** a unifying principle that explains a body of facts and relations.
 - **D)** a model used to visualize the invisible.
 - E) a descriptive mathematical relation of experimental trends.
- 2. The "normal" lead content in human blood is about 0.40 part per million (ppm) (that is, 0.40 g of lead per million grams of blood). How many grams of lead are contained in 6.0×10^3 g of blood (the amount in an average adult) if the lead content is 0.47 ppm?
 - A) 2.8×10^{-3} g Pb B) 5.6×10^{3} g Pb C) 9.3×10^{-2} g Pb
 - **D)** 3.7×10^{-3} g Pb
 - **E)** 1.1×10^{-3} g Pb
- 3. Radio waves travel at the speed of light, which is 3.00×10^8 m/s. How many minutes does it take for a radio message to reach Earth from Mars if Mars is 3.5×10^8 km from Earth?
 - **A)** 19.4 min
 - **B)** 5.5×10^{-3} min
 - **C)** 0.33 min
 - **D)** 1.8 × 10²¹ min
 - **E)** 5.5 min

- **4.** Ammonia NH₃ boils at -28.1° F. What temperature is this in °C?
 - A) 33.4°C
 B) 60.1°C
 C) 92.1°C
 D) 18.5°C
 E) +13.5°C
- 5. A cylindrical glass tube 12.7 cm in length is filled with mercury. The mass of mercury needed to fill the tube is 135.7 g. What is the inner diameter of the tube? (The density of mercury = 13.6 g/mL.)
 - A) 1.00 cm
 - **B)** 0.882 cm
 - **C)** 1.34 cm
 - **D)** 0.441 cm
 - **E)** 1.27 cm
- 6. It is very difficult to separate **chemically** isotopes of an element from each other because
 - A) isotopes of an element contain the same number of electrons.
 - B) isotopes of an element contain the different number of protons.
 - C) isotopes of an element have the same atomic mass.
 - D) isotopes of an element contain the same number of neutrons.
 - E) isotopes of an element have different atomic sizes.

7. Which names of the following elements are **correctly** matched with their symbols?

I. Ca, carbon II. Mn, manganese III. P, potassium IV. Sn, tin

- A) II and IV
- B) I and IV
- c) III and IV
- D) II and III
- E) I and III

8. Two elements, X and Y react to form compounds A and B:

- Compound A: 2.59 g of Y combine with 1.00 g of X

- Compound B: 1.55 g of Y combine with 1.00 g of X The ratio of Y in compound B to Y in compound A that demonstrate the law of multiple proportions is:

- **A)** 3/5
- **B)** 13/8
- **C)** 5/2
- **D)** 2/3
- **E)** 5/7
- **9.** Name the following compound and indicate whether it is ionic or molecular.

 P_2I_4

- A) diphosphorus tetraiodide; molecular
- B) phosphorus tetraiodide; molecular
- **C)** diphosphorus iodide; ionic
- **D)** phosphorus iodide; ionic
- E) phosphorus tetraiodine; molecular

- **10.** The species containing 17 protons, 18 neutrons and 18 electrons is **correctly** represented by which of the following symbols?
 - A) ${}^{35}_{17}$ Cl⁻ B) ${}^{18}_{17}$ Cl⁻ C) ${}^{35}_{18}$ Ar D) ${}^{35}_{17}$ Br⁻
 - **E)** ${}^{84}_{36}Cl$
- 11. How many nitrogen atoms are there in 2.000 mol (NH₄)₂SO₄?
 - A) 2.409×10^{24} B) 6.022×10^{23} C) 4.818×10^{24} D) 8×10^{23} E) 4×10^{24}
- Chlorine gas consists of two isotopes; CI-35 (atomic mass = 34.980) and CI-37 (atomic mass = 36.980). Estimate the percentage of the most abundant isotope.
 - **A)** 76.5 %
 - **B)** 47.0 %
 - **C)** 1.27 %
 - **D)** 23.5 %
 - E) 36.9 %

13. When the following equation:

 Cl_2 + KOH \rightarrow KClO_3 + KCl + H_2O is balanced with whole number coefficients, the coefficient of KCl is:

- **A)** 5
- **B)** 2
- **C)** 3
- **D)** 4
- **E)** 6
- 14. When 4.50 g of pure Fe_2O_3 was treated with excess $H_2(g)$ at high temperatures, 3.00 g of iron metal was recovered. Calculate the percent yield for the reaction.

 $Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(g)$

- A) 95.2
- **B)** 70.0
- **C)** 60.5
- **D)** 82.5
- **E)** 31.5
- 15. A 0.537 g sample of a compound containing only carbon, hydrogen, and oxygen was burned in air to produce 1.030 g CO₂ and 0.632 g H₂O. What is the empirical formula of this compound?
 - **A)** C₂H₆O
 - **B)** CH₆O₂
 - C) CH₅O
 - \dot{D} C_3H_5O
 - E) $C_2H_5O_2$

- **16.** Phosphorus forms many oxoacids. Indicate the oxidation number of phosphorus in HPO₃, H₃PO₂, and H₅P₃O₁₀, respectively.
 - A) +5, +1, +5
 B) +6, +4, +20
 C) +5, +3, +5
 D) +5, +3, +7
 E) +6, +3, +1
- 17. How many grams of H_2O will be formed when 35.0 ml of 0.100 M HNO_3 solution is completely neutralized by NaOH?
 - A) 0.0630B) 0.0450
 - **C)** 0.450
 - 0.430
 - **D)** 0.250
 - **E)** 18.0
- 18. In the following reaction calculate how many mL of 0.250 M Cr₂(SO₄)₃ solution is required to react completely with 225 mL of 0.400 M BaCl₂?

 $Cr_2(SO_4)_3(aq) + 3BaCl_2(aq) \rightarrow 3BaSO_4(s) + 2CrCl_3(aq)$

- **A)** 120 mL
- **B)** 160 mL
- **C)** 250 mL
- **D)** 400 mL
- **E)** 140 mL

- **19.** A 35.2 mL, 1.66 *M* KMnO₄ solution is mixed with 167.0 mL of 0.892 *M* KMnO₄ solution. Calculate the concentration of the final solution.
 - **A)** 1.03 *M*
 - **B)** 0.638 *M*
 - **C)** 2.55 *M*
 - **D)** 1.28 *M*
 - **E)** 1.41 *M*
- **20.** Which of the following aqueous solutions would you expect to be the best conductor of electricity at 258° C?
 - **A)** 0.20 $M Mg(NO_3)_2$
 - **B)** 0.60 *M* CH₃COOH
 - **C)** 0.25 *M* HCl
 - D) 0.20 M NaCl
 - E) 0.20 M NaOH

Answer Key

- **1.** A
- A
 A
- **4.** A
- **5.** A
- **6.** A
- **7.** A
- **8.** A
- **9.** A
- **10.** A
- **11.** A **12.** A
- **13.** A
- **14.** A
- **15.** A
- **16.** A
- **17.** A
- **18.** A
- **19.** A
- **20.** A