

Polyhedron 21 (2002) 1267-1271

Synthesis of silver(I) complexes of thiones and their characterization by ¹³C, ¹⁵N and ¹⁰⁷Ag NMR spectroscopy

Anvarhusein A. Isab*, Saeed Ahmad, Mohammed Arab

Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Received 8 January 2002; accepted 28 March 2002

Abstract

Silver(I) complexes of thiones (L), [LAgNO₃] and [AgL₂]NO₃ have been prepared and characterized by elemental analysis, IR and NMR (1 H, 13 C, 15 N and 107 Ag) spectroscopy. An upfield shift in the C=S resonance of thiones in 13 C NMR and downfield shifts in N-H resonances in 1 H and 15 N NMR are consistent with the sulfur coordination to silver(I). In 107 Ag NMR, the AgNO₃ signal is deshielded by 300–500 ppm on its coordination to thiones. Greater upfield shifts in 13 C NMR are observed for [LAgNO₃] compared with [AgL₂]NO₃ complexes, whereas the opposite trend is observed for 1 H, 15 N and 107 Ag chemical shifts. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Silver(I) complexes; Thiones; NMR studies

1. Introduction

Complexes of heterocyclic thiones such as imidazolidine-2-thione (Imt), diazinane-2-thione (Diaz) and their derivatives with transition metals are of interest in bioinorganic chemistry because of the search for simple model compounds for metal proteins [1,2]. In view of this, Cu(I) [3], Ag(I) [4,5], Au(I) [6-8], Hg(II) [9] and Cd(II) [10] complexes with thiones have been widely studied in recent years. In our previous work on silverthione complexes, we reported the synthesis and spectroscopic characterization of various [LAgNO₃] (where L = Imt, Diaz and their derivatives) [4] and $Ag(Tu)_x NO_3$ (Tu = thiourea and x = 1-4) complexes [11]. The present report describes the synthesis of silver(I) complexes of the stoichiometry, [AgL₂]NO₃ for a series of thiones and their characterization by ¹³C, ¹⁵N and ¹⁰⁷Ag NMR spectroscopy. The results of ¹⁵N and ¹⁰⁷Ag NMR for [LAgNO₃] complexes are also presented. Among [LAgNO₃] complexes, [DmTuAgNO₃] and [DiapAgNO₃] were not reported earlier. The main goal of the study is to provide a data

E-mail address: aisab@kfupm.edu.sa (A.A. Isab).

base of $^{13}\mathrm{C}$ and $^{107}\mathrm{Ag}$ NMR spectra for silver(I) complexes of thiones.

The structures of the thiones used in this study are described in Scheme 1.

2. Experimental

2.1. Chemicals

N,N-dimethylthiourea, methanol, acetone, acetonitrile and DMSO- d_6 were obtained from Fluka Chemical Co. The thione ligands were synthesized according to

Scheme 1. (a) N,N'-dimethylthiourea (DmTu); (b) R=H; imidazolidine-2-thione (Imt); (c) $R=CH_3$; N-methylimidazolidine-2-thione (MeImt); (d) $R=C_2H_5$; N-ethylimidazolidine-2-thione (EtImt); (e) $R=C_3H_7$; N-propylimidazolidine-2-thione (PrImt); (f) R=i- C_3H_7 ; N-(i-propyl)imidazolidine-2-thione (i-PrImt); (g) R=H; 1,3-diazinane-2-thione (Diaz); (h) $R=C_2H_5$; N-ethyl-1,3-diazinane-2-thione (EtDiaz); (i) 1,3-diazipane-2-thione (Diap).

^{*} Corresponding author. Tel.: +966-3-860-2645; fax: +966-3-860-4277.