

Inorganic Chemistry Communications 5 (2002) 355-357



www.elsevier.com/locate/inoche

# Silver(I) complexes of selenourea (<sup>13</sup>C and <sup>15</sup>N labeled); characterization by <sup>13</sup>C, <sup>15</sup>N and <sup>107</sup>Ag NMR

Saeed Ahmad, Anvarhusein A. Isab \*

Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Received 15 December 2001; accepted 12 March 2002

#### Abstract

Silver(I) complexes of selenourea (Seu), Ag(Seu)NO<sub>3</sub> and Ag(Seu)<sub>2</sub>NO<sub>3</sub> have been prepared and characterized by elemental analysis, IR and NMR ( $^{1}$ H,  $^{13}$ C,  $^{15}$ N and  $^{107}$ Ag) spectroscopy. An upfield shift in  $^{13}$ C NMR and downfield shifts in  $^{1}$ H and  $^{15}$ N NMR for selenourea resonances are consistent with the selenium coordination to Ag(I). In  $^{107}$ Ag NMR, the AgNO<sub>3</sub> signal is deshielded by more than 600 ppm on its coordination to selenourea. © 2002 Published by Elsevier Science B.V.

Keywords: Silver(I); Complexes; Selenourea; NMR

### 1. Introduction

Selenourea,  $[SeC(NH_2)_2]$  (Seu) has a high nucleophilicity, caused by the strong electron donating effect of the amino groups, which is comparable to that of thiourea [1]. Some metal complexes of Seu are already reported in the literature [2–4], but there is no known report describing the complexation of AgNO<sub>3</sub> with selenourea or other selenones. In this work we report the synthesis of the 1:1 and the 1:2 complexes of silver(I) with selenourea (10% <sup>13</sup>C and <sup>15</sup>N labeled) and their characterization by <sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N and <sup>107</sup>Ag NMR spectroscopy. Characterization of silver(I) complexes of such small ambidentate ligands would provide a basis for understanding and predicting the interaction with more complex selenone ligands. Recently, we reported the similar studies for silver(I) complexes of thiourea (Tu) [5].

# 2. Experimental

#### 2.1. Preparation of the complexes

The complexes were prepared by mixing the solutions of Seu and AgNO<sub>3</sub> in acetonitrile in the molar ratios of

\* Corresponding author. Fax: +9663-860-4277.

1:1 or 2:1 and stirring for 15 min. The resulting white precipitates were filtered and washed with acetone. After preparation the complexes were stored in refrigerator. Yield = 85%. Melting points;  $Ag(Seu)NO_3 =$  decomposed at 108 °C,  $Ag(Seu)_2NO_3 = 157-158$  °C.

*Anal.* Found (Calc): C, 4.46 (4.10); H, 1.43 (1.38); N 14.82 (14.35) for Ag(Seu)NO<sub>3</sub> and C, 5.99 (5.77); H, 1.99 (1.94); N, 16.97 (16.84) for Ag(Seu)<sub>2</sub>NO<sub>3</sub>.

## 2.2. Instrumentation

The solid-state IR spectra were recorded on a Perkin-Elmer FTIR 180 spectrophotometer using KBR pellets. All NMR measurements were carried out on a Jeol JNM-LA 500 NMR spectrophotometer at 297 K using 0.25 M solution of the complexes in DMSO-d<sub>6</sub>. Since both complexes give black deposits in solution after some time therefore, spectra were measured within 30-40 min. The <sup>13</sup>C NMR spectra were obtained at the frequency of 125.65 MHz with <sup>1</sup>H broadband decoupling and relative to TMS. The <sup>15</sup>N NMR spectrum were recorded at 50.55 MHz using NH4<sup>15</sup>NO3 as an external reference, which lies at 375.11 ppm relative to pure CH<sub>3</sub>NO<sub>2</sub>. The <sup>107</sup>Ag NMR was obtained at 20.13 MHz using 10 mm low frequency probe with 9.1 M aqueous AgNO<sub>3</sub> as an external reference. The spectral conditions were: 1.02 s acquisition time, 6.0 s delay time, 45° pulse angle and approximately 500 scans. The <sup>77</sup>Se

E-mail address: aisab@kfupm.edu.sa (A.A. Isab).

<sup>1387-7003/02/\$ -</sup> see front matter 0 2002 Published by Elsevier Science B.V. PII: S1387-7003(02)00405-7