

Inorganic Chemistry Communications 4 (2001) 362-364

Synthesis of cyano(ergothionine)gold(I) complex and its disproportionation in solution

Saeed Ahmad, Anvarhusein A. Isab *

Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

The cyano(ergothionine)gold(I) complex, ErS-Au-CN was prepared and characterized by elemental analysis, IR and NMR spectroscopies. Its disproportionation in solution forming $[Au(CN)_2]^-$ and $[(ErS)_2Au]^+$ was investigated by ¹³C and ¹⁵N NMR. Equilibrium constant (K_{eq}) for disproportionation of the complex was measured by integrating the ¹³C NMR at 297 K and was found to be 1.08. © 2001 Published by Elsevier Science B.V.

Keywords: Ergothionine; Gold(I); NMR; Disproportionation

1. Introduction

Disproportionation reactions are characteristics of cyano gold(I) complexes because of a very large formation constant of $[Au(CN)_2]^-$ (log $\beta=36.6$) [1], which drives the ligand exchange in forward direction generating $[Au(CN)_2]^-$. Disproportionation reactions have been reported for a variety of cyano(phosphine)gold(I) complexes [2–4]. These complexes are usually monomers and two coordinate in solid state. However, in solution they undergo disproportionation to form the symmetrically substituted complexes according to the equilibrium (1):

$$2[R_3PAuCN] \rightleftharpoons [Au(CN)_2]^- + [(R_3P)_2Au]^+$$
 (1)

Recently, we observed that the [Cy₃P=S-AuCN] [5] and [Cy₃P=Se-AuCN] [6] type complexes undergo similar disproportionation reactions. Disproportionation is also known for cyano-thiolatogold(I) complexes [7,8]. However, there does not appear to be any study describing disproportionation in cyano(thione)gold(I) complexes, although the synthesis of various cyano(thione)gold(I) complexes has already been reported but without any evidence of disproportionation [9]. The biological significance of such reactions is that they may alter the solution chemistry of gold(I) com-

plexes used in the treatment of rheumatoid arthritis [10–12].

It is well known that gold drugs react with CN⁻ (produced naturally in the body by oxidation of SCN⁻ by the enzyme myeloperoxidase in white blood cells [13]) forming the intermediate [RS-Au-CN] which disproportionates to give $[Au(SR)_2]^-$ and $[Au(CN)_2]^-$ species which enter the red blood cells (RBCs) and change the metabolism of gold drugs [10-12]. The level of [Au(CN)₂] is higher for smokers than for nonsmokers because of inhalation of HCN from tobacco smoke [14]. The RBCs, which contain thiol and thione ligands, e.g., hemoglobin (Hb), glutathione (Glu) and ergothionine (ErS), can form stable complexes with gold drugs including AuCN [7,11,12]. The concentrations of Hb and Glu in RBCs are 4 and 2.5 mM, respectively, while that of ErS is 0.15-0.60 mM [11]. Glu and Hb have the SH group as their binding site and are more reactive than ErS, which exists in thiol (ErSH), I - thione (ErS), II equilibrium as given by (2). The thione form is predominant in the solid state and at physiological pH [12, 15].

^{*}Corresponding author. Fax: +9663-860-4277.

E-mail address: aisab@kfupm.edu.sa (A.A. Isab).