

Polyhedron 25 (2006) 2629-2636

Synthesis and characterization of mercury(II) complexes of selones: X-ray structures, CP MAS and solution NMR studies

Anvarhusein A. Isab *, Mohammed I.M. Wazeer, Mohammed Fettouhi, Saeed Ahmad ¹, Waqar Ashraf

Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Received 22 January 2006; accepted 29 March 2006 Available online 6 May 2006

Abstract

Mercury(II) complexes of selones (L) having the general formulae, $[L_2HgCl_2]$, $[L_3HgCl]Cl$ and $[L_4Hg]Cl_2$ have been prepared and characterized by elemental analysis, IR and NMR (1H , ^{13}C , ^{15}N , ^{77}Se , ^{199}Hg) spectroscopy. A decrease in the IR frequency of the >C=Se mode upon complexation is indicative of mercury(II) binding via a selone group. Upfield shifts in >C=Se resonance of selones in ^{13}C and ^{77}Se NMR and downfield shifts in N-H resonances in ^{14}H and ^{15}N NMR are consistent with the selenium coordination to mercury(II). The complex of dichloro-bis(N-isopropyl-imidazolidine-2-selone-S)mercury(II), has been characterized by X-ray crystal analysis. The principal components of the ^{77}Se and ^{199}Hg shielding tensors were determined from solid-state NMR data. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Mercury(II) complexes; Selones; CP MAS NMR studies; Crystal structure

1. Introduction

Selenium containing ligands e.g., selenolates and selones are known to form stable complexes with class b metal ions, such as gold(I) [1,2] and Hg(II) [3,4] because selenium is considered to be a soft Lewis base. Recent research has shown that mercury(II) is known to interact with selenium in the body resulting in a reduction of toxicity of both the metal ion and selenium [5,6]. Therefore, a systematic investigation of mercury complexation with selenium-containing ligands is important from a biological point of view. Although extensive research has been done on mercury(II) complexes of sulfur donating ligands [7–10], only limited reports are available about the coordination of selenium containing ligands [11,12]. We have been investigating the coordination chemistry of C=S and C=Se ligands with

2.1. Chemicals

Selenourea and dimethylselenourea were obtained from Acros Organics. DMSO-d₆ and all solvents were obtained from Fluka–Aldrich Chemical Co., Germany. The selones were synthesized according to the procedure described in the literature [18,19]. Labeled selenourea was obtained from Isotec company, USA.

d¹⁰ metal ions in an attempt to examine their mode of binding and to study their physical properties [7,13–17]. As an extension of our interest in the structural chemistry of metal–selenium interactions, the work on mercury(II) complexes of selones has been initiated [12]. The present report describes the synthesis of some mercury(II) complexes with a number of selones and their characterization by IR, ¹³C, ¹⁵N and ⁷⁷Se, ¹⁹⁹Hg NMR. The structures of the selones used in this study and their resonance assignments are described in Scheme 1.

^{2.} Experimental

^{*} Corresponding author. Fax: +966 3 8604277. E-mail address: aisab@kfupm.edu.sa (A.A. Isab).

¹ Present address: Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.