Exchange Reactions between Albumin-Au(I)-PEt₃ Complex and Me₃PAuCl or *i*Pr₃PAuCl: ³¹P NMR Spectroscopic Studies

ANVARHUSEIN A. ISAB*, C. FRANK SHAW III*, AMALIA MUNOZ AND JAMES D. HOESCHELE

Department of Chemistry, The University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201-0413.

Received on March 6, 2003; in final form September 25, 2003

The AlbSAuPEt₃ complex was prepared *in vitro* by reacting AlbSH with auranofin.[§] It is shown that the Et₃PAu⁺ entity is liable to exchange in the presence of Me₃PAuX and *i*Pr₃PAuX (X = Cl⁻ or AtgS⁻; AtgS⁻ = tetraacetyl thioglucose). ³¹P NMR spectroscopy was used to follow these exchange reactions. Either Me₃PAu⁺ or *i*Pr₃PAu⁺ replaces Et₃PAu⁺ from the AlbSAuPEt₃ complex. Since the *i*Pr₃P ligand is bulkier (reflected by its bigger Tollman cone angle), it is surprising that it replaces Et₃PAu⁺ almost equally as well as Me₃PAu⁺. It is also demonstrated that Et₃PAu⁺ bound to the weak binding sites of albumin (primarily histidines) can be transferred to the stronger binding site which is AlbSAuPEt₃ to form the bis complex AlbS(AuPEt₃)₂. The transfer of Et₃PAu⁺ between protein species is relevant to mechanism by which gold may be transferred between proteins *in vivo*.

Keywords: : exchange reactions, gold(I), phosphine, albumin, ³¹P NMR spectroscopy

INTRODUCTION

Gold(I) drugs are extensively used in chrysotherapy, the treatment of rheumatoid arthritis, although the metabolism of gold and the mechanism(s) of chrysotherapy are not well understood [1,2]. Since various gold(I) species bind predominately to albumin in the blood stream *in vivo* [3], the binding site and ligation of gold(I) have been topics of interest [4-8]. In vitro studies have demonstrated that the strong binding site is the free thiol residue cys-34 [4,6-8], of albumin. Auranofin, the second-generation gold drug AtgSAuPEt₃ = [(triethylphosphine)(2,3,4,6-tetra-O-acetyl-1-thio-b-D-glucopyanosato-S)gold(I)] binds to albumin exclusively through the displacement of its tetra acetyl thioglucose ligand by cys-34 [6-10].

^{*} Corresponding author. E-mail: aisab@kfupm.edu.sa