c c Sample_Code_10 c Solves two nonlinear BVP's using Chebyshev collocation Method c c IMPLICIT DOUBLE PRECISION (a-h,o-z) parameter (N=20,N1=N+1,NTOT=2*N1) DOUBLE PRECISION Y(NTOT),Y_G(NTOT) COMMON /CHEB/ z1,z2,PI,Alpha,Beta COMMON /TRANS/ C(N1),CBAR(N1),CT(N1,N1),CTINV(N1,N1),Z(N1) COMMON /COLLEC/ D(N1,N1),DD(N1,N1) COMMON /PARAM/ Phi,GAMA,BETA2 OPEN(11,FILE='sample_code_10_output.txt') c PI = 4.d0*DATAN(1.d0) z1 = 0.d0 z2 = 1.d0 Phi = 1.d0 GAMA = 1.d0 BETA2 = 1.d0 c itmax = 10 ! Maximum Number of Iterations tol = 1.d-10 ! Maximum Tolerance iflag = 1 ! Flag for the Jacobian Matrix (0 -> analytical Jacobian, 1 -> Numerical Jacobian) c call Chebyshev c do i = 1, N1 Y_G( i) = dcosh(phi*Z(i))/dcosh(phi) Y_G(N1+i) = 0.d0 enddo c call Newton(itmax,tol, iflag,Y_G,Y) c do i = 1, N1 write(11,'(3f16.6)') Z(i),Y(i),Y(N1+i) write(* ,'(3f16.6)') Z(i),Y(i),Y(N1+i) enddo c 1000 stop end c c c c c c c c Subroutine Newton to to solve a system of algebraic equations iteratively subroutine Newton(itmax,tol, iflag,UNKNON_G,UNKNON) IMPLICIT DOUBLE PRECISION (A-H,O-Z) parameter (N=20,N1=N+1,NTOT=2*N1) DOUBLE PRECISION A(NTOT,NTOT),UNKNON_G(NTOT),UNKNON(NTOT),B(NTOT) COMMON /COLLEC/ D(N1,N1),DD(N1,N1) integer ipvt(NTOT) c c initialize matrix A and vector B do i = 1, NTOT UNKNON(i) = UNKNON_G(i) B(i) = 0.d0 do j = 1, NTOT A(i,j)=0.d0 enddo enddo c c Start Iterative Solution iter = 0 10 iter = iter + 1 if (iter .gt. itmax) go to 12 c c Input system of nonlinear equations c on return B contains the residuals write(11 ,*) iter call residuals(UNKNON,B) c c Check the norm of the residuals rnorm = 0.d0 do i = 1, NTOT rnorm = rnorm + B(i)**2 enddo rnorm = dsqrt(rnorm) write(*,'(3x,a,i3,5x,a,e17.10)') ! 'iteration #',iter, 'Tolerance =', rnorm c if (rnorm .lt. tol) return c c Evaluate the Jacobian Matrix call jacobian(IFLAG,UNKNON,A) c c LU-decompose matrix A c Note that matrix A will contains on return the L and U matrixes (original is destroyed) call ludcmp(A,NTOT,NTOT,ipvt,dummy) c c Solve the equations: A .(Xiter+1-Xiter) =-B, by backsubstitution c Note that vector B will contains the unknowns X (original is destroyed) c for Newton Raphson method B = Xiter+1 - Xiter do i = 1, NTOT B(i) = -B(i) enddo c call lubksb(A,NTOT,NTOT,ipvt,B) c do i= 1, NTOT UNKNON(i) = UNKNON(i)+B(i) enddo c go to 10 c 12 write(11,*) 'No Convergence !' write(*,*) 'No Convergence !' stop return end c c c c c c c c c c c c c Subroutine Residuals to Input System of Non-Linear Equations SUBROUTINE RESIDUALS(Y,R) IMPLICIT DOUBLE PRECISION (a-h,o-z) parameter (N=20,N1=N+1,NTOT=2*N1) DOUBLE PRECISION Y(NTOT),R(NTOT) COMMON /CHEB/ z1,z2,PI,Alpha,Beta COMMON /TRANS/ C(N1),CBAR(N1),CT(N1,N1),CTINV(N1,N1),Z(N1) COMMON /COLLEC/ D(N1,N1),DD(N1,N1) COMMON /PARAM/ Phi,GAMA,BETA2 c do i = 1, NTOT R(i) = 0.d0 enddo c c Construct Residuals using Chebyshev Collocation c do i = 2, N1-1 R( i) = -phi**2*dexp(GAMA*Y(N1+i)/(1.d0+Y(N1+i)))*Y(i) R(N1+i) = beta2*phi**2*dexp(GAMA*Y(N1+i)/(1.d0+Y(N1+i)))*Y(i) do j = 1, N1 R( i) = R( i) + DD(i,j)*Y( j) R(N1+i) = R(N1+i) + DD(i,j)*Y(N1+j) enddo enddo c c Boundary Conditions c In Collecation, the first equation for the first BC and the last equation for the second BC do j = 1, N1 R( 1) = R( 1)+D(1,j)*Y( j) R(N1+1) = R(N1+1)+D(1,j)*Y(N1+j) enddo R( N1) = Y( N1)-1.d0 R(N1+N1) = Y(N1+N1)-0.d0 c return end c c c c c c c c c Subroutine jacobian to Evaluate the Jacobian Matrix subroutine jacobian(IFLAG,UNKNON,A) IMPLICIT DOUBLE PRECISION (A-H,O-Z) parameter (N=20,N1=N+1,NTOT=2*N1) double precision A(NTOT,NTOT),UNKNON(NTOT),UNKNONJ(NTOT), ! R(NTOT),RJ(NTOT) parameter (epsl=1.d-5) c do i = 1, NTOT do j = 1, NTOT A(i,j)=0.d0 enddo enddo c if (IFLAG .gt. 0) go to 10 c c Evaluate the jacobian matrix analatically return c c Evaluate the jacobian matrix numerically 10 do i = 1, NTOT UNKNONJ(i) = UNKNON(i) enddo c call residuals(UNKNON,R) c do i = 1, NTOT diff = dmax1(epsl,dabs(epsl*UNKNON(i))) UNKNONJ(i) = UNKNON(i)+diff call residuals(UNKNONJ,RJ) do j = 1, NTOT A(j,i) = (RJ(j)-R(j))/diff enddo UNKNONJ(i)=UNKNON(i) enddo return end c c c SUBROUTINE Chebyshev IMPLICIT DOUBLE PRECISION (a-h,o-z) parameter (N=20,N1=N+1,NTOT=2*N1) DOUBLE PRECISION XCHEB(N1) COMMON /CHEB/ z1,z2,PI,Alpha,Beta COMMON /TRANS/ C(N1),CBAR(N1),CT(N1,N1),CTINV(N1,N1),Z(N1) COMMON /COLLEC/ D(N1,N1),DD(N1,N1) c c Vector XCHEB (1,-1) contains the Gauss-Lobatto grid. do i = 1, N1 XCHEB(i) = dcos((i-1)*pi/N) CBAR(i) = 1.d0 C(i) = 1.d0 enddo c C(1) = 2.d0 CBAR(1) = 2.d0 CBAR(N1) = 2.d0 c c Vector X maps XCHEB to the interval (z1,z2) ==> X(i) = Alpha + Beta*XCHEB(i) Alpha = (z1+z2)/2.d0 Beta = (z1-z2)/2.d0 c do i = 1, N1 Z(i) = Alpha + Beta*XCHEB(i) enddo c do i = 1, N1 do j = 1, N1 CT(i,j) = 2.d0/N/CBAR(i)/CBAR(j)*dcos(pi*(i-1)*(j-1)/N) CTINV(i,j) = dcos(pi*(i-1)*(j-1)/N) enddo enddo c do i = 1, N1 ii = i-1 do j = 1, N1 jj = j-1 if (ii .ne. jj) then D(i,j) = CBAR(i)/CBAR(j)*(-1)**(ii+jj)/(XCHEB(i)-XCHEB(j)) else if (ii .ne. 0 .and. ii .ne. N) then D(i,j) = -XCHEB(j)/2.d0/(1.d0-XCHEB(j)**2) endif endif enddo enddo D( 1, 1) = (2.d0*dble(N)**2+1.d0)/6.d0 D(N1,N1) =-(2.d0*dble(N)**2+1.d0)/6.d0 c do i=1,N1 do j=1,N1 DD(i,j) = 0.d0 do k=1,N1 DD(i,j) = DD(i,j) + D(i,k)*D(k,j) enddo enddo enddo c do i = 1, N1 do j = 1, N1 D(i,j) = D(i,j)/BETA DD(i,j) = DD(i,j)/BETA/BETA enddo enddo c return end c c c c c c c c c c c c c c SUBROUTINE ludcmp(a,n,np,indx,d) IMPLICIT DOUBLE PRECISION (A-H,O-Z) INTEGER n,np,indx(n),NMAX DOUBLE PRECISION d,a(np,np),TINY PARAMETER (NMAX=500,TINY=1.0e-20) INTEGER i,imax,j,k DOUBLE PRECISION aamax,dum,sum,vv(NMAX) d=1. do 12 i=1,n aamax=0.d0 do 11 j=1,n if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j)) 11 continue if (aamax.eq.0.d0) pause 'singular matrix in ludcmp' vv(i)=1./aamax 12 continue do 19 j=1,n do 14 i=1,j-1 sum=a(i,j) do 13 k=1,i-1 sum=sum-a(i,k)*a(k,j) 13 continue a(i,j)=sum 14 continue aamax=0.d0 do 16 i=j,n sum=a(i,j) do 15 k=1,j-1 sum=sum-a(i,k)*a(k,j) 15 continue a(i,j)=sum dum=vv(i)*abs(sum) if (dum.ge.aamax) then imax=i aamax=dum endif 16 continue if (j.ne.imax)then do 17 k=1,n dum=a(imax,k) a(imax,k)=a(j,k) a(j,k)=dum 17 continue d=-d vv(imax)=vv(j) endif indx(j)=imax if(a(j,j).eq.0.d0)a(j,j)=TINY if(j.ne.n)then dum=1./a(j,j) do 18 i=j+1,n a(i,j)=a(i,j)*dum 18 continue endif 19 continue return END c SUBROUTINE lubksb(a,n,np,indx,b) IMPLICIT DOUBLE PRECISION (A-H,O-Z) INTEGER n,np,indx(n) DOUBLE PRECISION a(np,np),b(n) INTEGER i,ii,j,ll DOUBLE PRECISION sum ii=0 do 12 i=1,n ll=indx(i) sum=b(ll) b(ll)=b(i) if (ii.ne.0)then do 11 j=ii,i-1 sum=sum-a(i,j)*b(j) 11 continue else if (sum.ne.0.d0) then ii=i endif b(i)=sum 12 continue do 14 i=n,1,-1 sum=b(i) do 13 j=i+1,n sum=sum-a(i,j)*b(j) 13 continue b(i)=sum/a(i,i) 14 continue return END