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Pressure Driven Flow through a Horizantal Circular Pipe 
 
 
A fluid of constant density ρ and viscosity μ flows through a horizontal pipe of 
radius R and length L shown in figure below. The pressures at the centers of the 
inlet and exit are p

1 
and p

2
, respectively. You may assume that the only nonzero 

velocity component is v
z

 

, and that this not a function of the angular coordinate, 
θ. 

 
Starting any further necessary assumptions, derive expressions for the 
following, in terms of any or all of R, L, p

1
, p

2

a) Velocity Profile  

,ρ,μ, and the coordinates r, z, and 
θ:  

b) Volumetric Flow Rate  
c) Maximum Velocity  
d) Mean Velocity  
e) Shear Stress  

 
 

First we start with the continuity equation in cylindrical coordinates for 
incompressible fluid (the density is constant): 

Solution: 
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Since the flow is in the z-direction only, then we have only one component of 
the velocity 0 and   0 ==≠ θvvv rz , continuity equation simplifies to:  

0=
∂
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z
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r R 
P = P1 Pressure Driven Flow 

P1 > P2 
P = P2 

L 
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Conclusion the simplified continuity equation implies that vz

 

 is not a function of 
z
 

vz

 
 ≠ f(z)

 
Also, for axi-symmetric problem, ( )θfvz ≠ . 
 

Second we use the Navier-Stokes equations in Cartesian coordinates: 
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To simplify Navier-Stokes equations we can utilize the following results: 

 
1. Steady state: ( ) 0any thing

=
∂

∂
t

 

2. Axi-symmetric problem: ( ) 0any thing
=

∂
∂

θ
 

3. We have one component of the velocity 0 and   0 ==≠ θvvv rz  
4. vz ≠ f(z, θ) it is only a function of y: vz
5. g

 = f(r). 
z

 
 = 0 

Therefore the N-S equations simplify to: 
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In pressure driven flows like this problem the pressure changes linearly along 
the direction of the flow: 

L
p

L
pp

z
p ∆

=
−

=
∂
∂ 12  

Velocity Profile: 

Integrate simplified NS equation once: 
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∫∫
∆
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Integrate second time: 
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To find the constants of integration apply the following Boundary Conditions: 

( )pipe ofcenter at  maximum isVelocity          0        0 ==
dr
dvr z  

( )ConditionBoundary  Slip-No           0        == zvRr  
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Rearrange: 
 

( )22
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The above equation is similar to an equation of a parabola and hence the 
velocity profile is called a parabolic velocity profile, see figure below:  
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Volumetric Flow Rate: 

∫=
A

z dAvQ   

In cylindrical coordinates:  

θdrdrdA  =  
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P = P1 P = P2 Pressure Driven Flow 
P1 > P2 

Parabolic Velocity Profile 
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Maximum Velocity: 
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Mean Velocity: 
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 Shear Stress: 
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Recall simplifications: 

1. Axi-symmetric problem: ( ) 0any thing
=

∂
∂

θ
 

2. We have one component of the velocity 0 and   0 ==≠ θvvv rz  
3. vz ≠ f(z, θ) it is only a function of y: vz

This leads to the following simplifications: 

 = f(r). 




























∂
∂








∂
∂

=
















00

000

00

  

r
v

r
v

z

z

zzzzr

zr

rzrrr

µ
τττ
τττ
τττ

θ

θθθθ

θ

 

Therefore, the only nonzero stresses are: 
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veveppp rz −⇒−=−=∆     is         12 τ  
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P = P1 P = P2 Pressure Driven Flow 
P1 > P2 

Shear Stress Profile 
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