Pressure Driven Flow through a Horizantal Circular Pipe

A fluid of constant density ρ and viscosity μ flows through a horizontal pipe of radius *R* and length *L* shown in figure below. The pressures at the centers of the inlet and exit are p_1 and p_2 , respectively. You may assume that the only nonzero velocity component is v_z , and that this not a function of the angular coordinate, θ .

Starting any further necessary assumptions, derive expressions for the following, in terms of any or all of *R*, *L*, p_1 , p_2 , ρ , μ , and the coordinates *r*, *z*, and θ :

- a) Velocity Profile
- b) Volumetric Flow Rate
- c) Maximum Velocity
- d) Mean Velocity
- e) Shear Stress

Solution:

First we start with the continuity equation in cylindrical coordinates for incompressible fluid (the density is constant):

$$\frac{1}{r}\frac{\partial(rv_r)}{\partial r} + \frac{1}{r}\frac{\partial(rv_{\theta})}{\partial \theta} + \frac{\partial v_z}{\partial z} = 0$$

Since the flow is in the z-direction only, then we have only one component of the velocity $v_z \neq 0$ and $v_r = v_{\theta} = 0$, continuity equation simplifies to:

$$\frac{\partial v_z}{\partial z} = 0$$

Conclusion the simplified continuity equation implies that v_z is not a function of z

 $v_z \neq f(z)$

Also, for axi-symmetric problem, $v_z \neq f(\theta)$.

Second we use the Navier-Stokes equations in Cartesian coordinates:

$$\begin{split} \rho \bigg(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial x} + \frac{v_{\theta}}{r} \frac{\partial v_r}{\partial y} - \frac{v_{\theta}^2}{r} + v_z \frac{\partial v_r}{\partial z} \bigg) &= -\frac{\partial p}{\partial r} + \mu \bigg(\frac{\partial}{\partial r} \bigg(\frac{1}{r} \frac{\partial (rv_r)}{\partial r} \bigg) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v_{\theta}}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2} \bigg) + \rho g_r, \\ \rho \bigg(\frac{\partial v_{\theta}}{\partial t} + v_r \frac{\partial v_{\theta}}{\partial x} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r v_{\theta}}{r} + v_z \frac{\partial v_{\theta}}{\partial z} \bigg) &= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \bigg(\frac{\partial}{\partial r} \bigg(\frac{1}{r} \frac{\partial (rv_{\theta})}{\partial r} \bigg) + \frac{1}{r^2} \frac{\partial^2 v_{\theta}}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_{\theta}}{\partial z^2} \bigg) + \rho g_{\theta}, \\ \rho \bigg(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial x} + \frac{v_{\theta}}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \bigg) &= -\frac{\partial p}{\partial z} + \mu \bigg(\frac{1}{r} \frac{\partial}{\partial r} \bigg(r \frac{\partial v_z}{\partial r} \bigg) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} + \frac{\partial^2 v_{\theta}}{\partial z^2} \bigg) + \rho g_z. \end{split}$$

To simplify Navier-Stokes equations we can utilize the following results:

- 1. Steady state: $\frac{\partial(\text{any thing})}{\partial t} = 0$
- 2. Axi-symmetric problem: $\frac{\partial(\text{any thing})}{\partial \theta} = 0$
- 3. We have one component of the velocity $v_z \neq 0$ and $v_r = v_{\theta} = 0$
- 4. $v_z \neq f(z, \theta)$ it is only a function of $y: v_z = f(r)$.
- 5. $g_z = 0$

Therefore the N-S equations simplify to:

$$0 = -\frac{\partial p}{\partial z} + \mu \frac{1}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right)$$

In pressure driven flows like this problem the pressure changes linearly along the direction of the flow:

$$\frac{\partial p}{\partial z} = \frac{p_2 - p_1}{L} = \frac{\Delta p}{L}$$

Velocity Profile:

Integrate simplified NS equation once:

$$\int d\left(r\frac{dv_z}{dr}\right) = \int \frac{1}{\mu} \frac{\Delta p}{L} r \, dr$$
$$r\frac{dv_z}{dr} = \frac{1}{\mu} \frac{\Delta p}{L} \frac{r^2}{2} + C_1$$

Integrate second time:

$$\int dv_z = \int \left(\frac{1}{\mu} \frac{\Delta p}{L} \frac{r}{2} + \frac{C_1}{r}\right) dr$$
$$\Rightarrow v_z = \frac{1}{\mu} \frac{\Delta p}{L} \frac{r^2}{4} + C_1 \ln(r) + C_2$$

To find the constants of integration apply the following Boundary Conditions:

<i>r</i> = 0	$\frac{dv_z}{dr} = 0$	(Velocity is maximum at center of pipe)
r = R	$v_z = 0$	(No - Slip Boundary Condition)
		$\frac{dv_z}{dr} = \frac{1}{\mu} \frac{\Delta p}{L} \frac{r}{2} + \frac{C_1}{r}$
$0 = \frac{1}{\mu} \frac{\Delta p}{L} \frac{0}{2} + \frac{C_1}{0} \qquad \Rightarrow \qquad C_1 = 0 \text{ (otherwise we have } \infty!)$		
$\Rightarrow v_z =$	$\frac{1}{\mu}\frac{\Delta p}{L}\frac{R^2}{4} + 0$	$\ln(R) + C_2 \implies C_2 = -\frac{1}{\mu} \frac{\Delta p}{L} \frac{R^2}{4}$
$\Rightarrow v_z = \frac{1}{\mu} \frac{\Delta p}{L} \frac{r^2}{4} - \frac{1}{\mu} \frac{\Delta p}{L} \frac{R^2}{4}$ range:		

Rearrange:

$$\Rightarrow v_z = \frac{1}{4\mu} \frac{\Delta p}{L} \left(r^2 - R^2 \right)$$

The above equation is similar to an equation of a parabola and hence the velocity profile is called a parabolic velocity profile, see figure below:

Parabolic Velocity Profile

Volumetric Flow Rate:

$$Q = \int_{A} v_z \, dA$$

In cylindrical coordinates:

$$dA = rdr \, d\theta$$
$$Q = \int_{0}^{2\pi R} \int_{0}^{R} v_z \, rdr \, d\theta = \int_{0}^{R} v_z \, 2\pi \, rdr$$
$$Q = \int_{0}^{R} \frac{1}{4\mu} \frac{\Delta p}{L} (r^2 - R^2) 2\pi \, rdr$$
$$= \frac{\pi}{2\mu} \frac{\Delta p}{L} \int_{0}^{R} (r^3 - R^2 r) dr$$
$$= \frac{\pi}{2\mu} \frac{\Delta p}{L} \left(\frac{r^4}{4} - R^2 \frac{r^2}{2} \right)_{0}^{R}$$

$$2\mu L (4)$$
$$= \frac{\pi}{2\mu} \frac{\Delta p}{L} - \frac{R^4}{4}$$

$$Q = \frac{\pi R^4}{8\mu} \frac{-\Delta p}{L} \qquad \text{(Hagen Poiseuille Law)}$$

Maximum Velocity:

$$v_{Max} = v_z \big|_{r=0} = \frac{R^2}{4\mu} \frac{-\Delta p}{L}$$

Mean Velocity:

$$v_m = \frac{Q}{A} = \frac{\frac{-\pi R^4 \Delta p}{8\mu L}}{\pi R^2} = \frac{R^2}{8\mu} \frac{-\Delta p}{L} = \frac{v_{Max}}{2}$$

Shear Stress:

$$\begin{bmatrix} \tau_{rr} & \tau_{r\theta} & \tau_{rz} \\ \tau_{\theta r} & \tau_{\theta \theta} & \tau_{\theta z} \\ \tau_{zr} & \tau_{z\theta} & \tau_{zz} \end{bmatrix} = \mu \begin{bmatrix} \left(2\frac{\partial v_r}{\partial r} \right) & \left(r\frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_r}{\partial \theta} \right) & \left(\frac{\partial v_z}{\partial r} + \frac{\partial v_r}{\partial z} \right) \\ \left(r\frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_r}{\partial \theta} \right) & \left(2\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + 2\frac{v_r}{r} \right) & \left(\frac{\partial v_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial v_z}{\partial \theta} \right) \\ \left(\frac{\partial v_z}{\partial r} + \frac{\partial v_r}{\partial z} \right) & \left(\frac{\partial v_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial v_z}{\partial \theta} \right) & \left(2\frac{\partial v_z}{\partial z} + \frac{1}{r} \frac{\partial v_z}{\partial \theta} \right) \end{bmatrix}$$

Recall simplifications:

- 1. Axi-symmetric problem: $\frac{\partial(\text{any thing})}{\partial \theta} = 0$
- 2. We have one component of the velocity $v_z \neq 0$ and $v_r = v_{\theta} = 0$
- 3. $v_z \neq f(z, \theta)$ it is only a function of $y: v_z = f(r)$.

This leads to the following simplifications:

$$\begin{bmatrix} \tau_{rr} & \tau_{r\theta} & \tau_{rz} \\ \tau_{\theta r} & \tau_{\theta \theta} & \tau_{\theta z} \\ \tau_{zr} & \tau_{z\theta} & \tau_{zz} \end{bmatrix} = \mu \begin{bmatrix} 0 & 0 & \left(\frac{\partial v_z}{\partial r}\right) \\ 0 & 0 & 0 \\ \left(\frac{\partial v_z}{\partial r}\right) & 0 & 0 \end{bmatrix}$$

Therefore, the only nonzero stresses are: $\tau_{rz} = \tau_{zr} = \mu \left(\frac{\partial v_z}{\partial r} \right)$.

Recall, $v_z = \frac{1}{4\mu} \frac{\Delta p}{L} (r^2 - R^2)$

$$\Rightarrow \tau_{rz} = \frac{1}{2} \frac{\Delta p}{L} r$$
$$\Delta p = p_2 - p_1 = -ve \implies \tau_{rz} \text{ is } -ve$$

Shear Stress Profile

