Chapter 8 Lecture \# 2-3

- Comparing Several Large Projects
- Comparing Investment Alternatives
- The Concept of Risk

Comparing Several Large Projects

\square DCFROR tells us how efficiently we are using our money.
\square The higher the DCFROR, the more attractive the individual investment.

Comparing Several Large Projects

Example 8.4

Our company is seeking to invest approximately $\$ 120 \times 10^{6}$ in new projects. After extensive research and preliminary design work, three projects have emerged as candidates for construction. The minimum acceptable internal discount (interest) rate, after tax, has been set at 10%. The after-tax cash flow information for the three projects using a ten-year operating life is as follows (values in $\$$ million):

$$
\begin{array}{ccc}
\text { Initial } & \text { After-tax Cash Flow in Year } i \\
\text { Investment } & i=1 \quad i=2-10
\end{array}
$$

Project A	$\$ 60$	$\$ 10$	$\$ 12$
Project B	$\$ 120$	$\$ 22$	$\$ 22$
Project C	$\$ 100$	$\$ 12$	$\$ 20$

Comparing Several Large Projects

For this example itis assumed hat the cost of land, workingrapaita, and salagege are zero. Furthermore, itis assumed that the initial investmento occurs at time $=0$, and the yearly anuual cash flows cccur a the end of each of the 10 years of plant operation. Detemine:
a. The NPV foreach project
b. The DCFROR foreach project.

Comparing Several Large Projects

For Project A we get:

$$
\begin{aligned}
N P V & =-\$ 60+(\$ 10)(P / F, 0.10,1)+(\$ 12)(P / A, 0.10,9)(P / F, 0.10,1) \\
& =-\$ 60+\frac{(\$ 10)}{1.1}+(\$ 12) \frac{1.1^{9}-1}{(0.1)\left(1.1^{9}\right)} \frac{1}{1.1}=\$ 11.9
\end{aligned}
$$

The DCFROR is the value of i that results in an $N P V=0$.

$$
N P V=0=-\$ 60+(\$ 10)(P / F, i, 1)+(\$ 12)(P / A, i, 9)(P / F, i, 1)
$$

Solving for i yields $i=D C F R O R=14.3 \%$.

Comparing Several Large Projects

Values obtained for NPV and DCFROR are:

	NPV (i=10\%)	DCFROR
Project A	11.9	14.3%
Project B	15.2	12.9%
Project C	15.6	13.3%

Note: Projects A, B, and C are mutually exclusive because we cannot invest in more than one of them, due to our cap of $\$ 120 \times 10^{6}$. The analysis that follows is limited to projects of this type. For the case when projects are not mutually exclusive, the analysis becomes somewhat more involved and is not covered here.

Comparing Several Large Projects

Example 8.5

This is a continuation of Example 8.4.
a. Determine the NPV and the DCFROR for each increment of investment.
b. Recommend the best option.
a. Project A to Project C :

Incremental investment is $\$ 40 \times 10^{6}=(\$ 100-\$ 60) \times 10^{6}$ Incremental cash flow for $i=1$ is $\$ 2 \times 10^{6} / \mathrm{yr}=(\$ 12 / \mathrm{yr}-\$ 10 / \mathrm{yr}) \times 10^{6}$ Incremental cash flow for $i=2$ to 10 is $\$ 8 \times 10^{6} / \mathrm{yr}=(\$ 20 / \mathrm{yr}-\$ 12 / \mathrm{yr}) \times 10^{6}$

$$
\begin{aligned}
& N P V=-\$ 40 \times 10^{6}+\left(\$ 2 \times 10^{6}\right)(P / F, 0.10,1)+\left(\$ 8 \times 10^{6}\right)(P / A, 0.10,9)(P / F, 0.10,1) \\
& N P V=\$ 3.7 \times 10^{6}
\end{aligned}
$$

Setting NPV $=0$ yields $D C F R O R=0.119(11.9 \%)$

Comparing Several Large Projects

Project C to Project B:
Incremental investment is $\$ 20 \times 10^{6}=(\$ 120-\$ 100) \times 10^{6}$ Incremental cash flow for $i=1$ is $\$ 10 \times 10^{6} / \mathrm{yr}=(\$ 22 / \mathrm{yr}-\$ 12 / \mathrm{yr}) \times 10^{6}$ Incremental cash flow for $i=2$ to 10 is $\$ 2 \times 10^{6} / \mathrm{yr}=(\$ 22 / \mathrm{yr}-\$ 20 / \mathrm{yr}) \times 10^{6}$

$$
N P V=-\$ 0.4 \times 10^{6} \text { and } D C F R O R=0.094(9.4 \%)
$$

b. It is recommended that we move ahead on Project C .

Comparing Investment Alternatives

When companing mutualy excusive inessment ditenndives, chocse the ditendivive with the •' ${ }^{\prime \prime \prime}$? net present value.

Comparing Investment Alternatives

Algorithm for Incremental Investment Analysis

Step 1: Establish the minimum acceptadle rate of return on investment for succh projects.
Step 2: Calculate the NPV for each project using the interest rate from Step 1.
Step 3: Eliminate all projects with negative NPV values.
Step 4: Of the remaining projects, select the project with the highest NPV.

The Concept of Risk

Option 1	Option 2
A new product is to be produced which has never been made in large scale.	A second plant is to be built in another region to meet increasing demand.
Pilot plant tests have been made and product sent to potential customers.	Company has dominant market position for this product.
The calculated rate of return is 33\%.	The rate of return is to be 12\%.

The Concept of Risk

Items that Favor Option 1	Items that Favor Option 2
High return on the investment	Well established market
Opens new product possibilities	Well-known manufacturing costs
	Transportation costs will be less
	Matured technology

The Concept of Risk

\square The high rate of return of option 1 is associated with high risk.
\square VP's Decision: Consider option 2 due to concern for lost market position.

