
Chapter 6 Lecture # 2-3

Utility cost depends on the cost of fuel

Figure 6.1 Changes in Fuel Prices from 1990 to 2000 (Information taken from Energy Information Administration [6])

Utility can be supplied in a number of ways:

■ Purchasing from a public or private utility.

■ Off-site generation.

■ On-site generation.

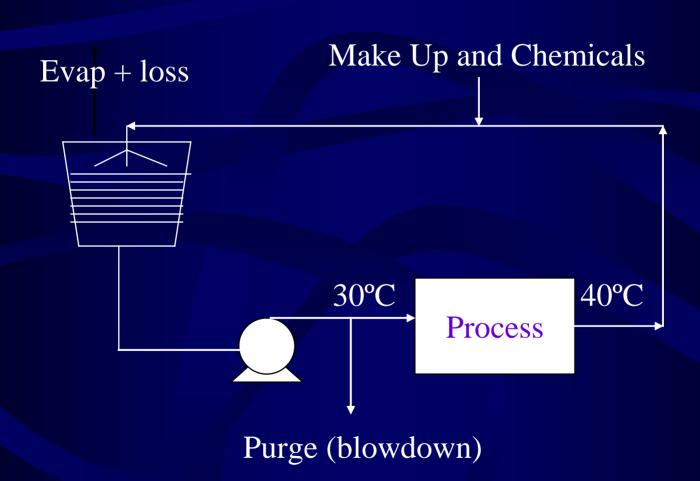
Table 6.3

Off site generation

(Capital cost of utility plant is not included)

Table 6.3 Utilities Provided by Off-sites for a Plant with Multiple Process Units (Costs Represent Charges for Utilities Delivered to the Battery Limit of a Process)

Utility	Description	Cost \$/GJ	Cost \$/Common Unit
Air supply	Pressurized and dried air (add 20% for instrument air) a. 6 barg (90 psig) b. 3.3 barg (50 psig)		\$0.49/100 std m ³ * \$0.35/100 std m ³ *
Steam from boilers	Process steam: latent heat only		
	 a. Low pressure (5 barg, 160°C) from HP steam with credit for power without credit for power 	6.08 7.78	\$12.68/1000 kg \$16.22/1000 kg
	b. Medium pressure (10 barg, 184°C) from HP steam with credit for power without credit for power	6.87 8.22	\$13.71/1000 kg \$16.40/1000 kg
	c. High pressure (41 barg, 254°C)	9.83	\$16.64/1000 kg
Steam generated from process	Estimate savings as avoided cost of burning natural gas in boiler	6.67	


Table 6.3 Utilities Provided by Off-sites for a Plant with Multiple Process Units (Costs Represent Charges for Utilities Delivered to the Battery Limit of a Process) (continued)

Utility	Description	Cost \$/GJ	Cost \$/Common Unit
Cooling tower water	Processes cooling water: 30°C to 40°C or 45°C	0.354	\$14.8/1000 m ^{3†}
Other water	High purity water for a. process use b. boiler feed water (available at 115°C) [‡] c. potable (drinking) d. deionized water		\$0.067/1000 kg \$2.45/1000 kg \$0.26/1000 kg \$1.00/1000 kg
Electrical substation	Electric Distribution a. 110 V b. 220 V c. 440 V	16.8	\$0.06/kWh
Fuels	a. Fuel oil (no. 2)b. Natural gasc. Coal (f.o.b. mine mouth)	6.0 6.0 [§] 1.07	\$232/m³ \$0.23/std m³* \$27.4/tonne

Table 6.3 Utilities Provided by Off-sites for a Plant with Multiple Process Units (Costs Represent Charges for Utilities Delivered to the Battery Limit of a Process) (continued)

Description	Cost \$/GJ	Cost \$/Common Unit
 a. Moderately low temperature Refrigerated water in at T = 5°C 		
and returned at 15°C	4.43	\$0.185/1000kg
Refrigerant available at $T = -20$ °C	7.89	Para Land
c. Very low temperature Refrigerant available at T = -50°C	13.11	Based on Process Cooling Duty
Cost based on thermal efficiency of fired heater using natural gas		
a. 90% efficient b. 80% efficient	6.6 7 7.5	Based on Process Heating Duty
a. Non-hazardous b. Hazardous		\$36/tonne \$200-2000/tonne°
 a. Primary (filtration) b. Secondary (filtration + activated sludge) 		\$41/1000 m ³ \$43/1000 m ³
c. Tertiary (filtration, activated sludge, and chemical processing)		\$56/1000 m ³
	 a. Moderately low temperature Refrigerated water in at T = 5°C and returned at 15°C b. Low temperature Refrigerant available at T = -20°C c. Very low temperature Refrigerant available at T = -50°C Cost based on thermal efficiency of fired heater using natural gas a. 90% efficient b. 80% efficient a. Non-hazardous b. Hazardous a. Primary (filtration) b. Secondary (filtration + activated sludge) c. Tertiary (filtration, activated 	a. Moderately low temperature Refrigerated water in at T = 5°C and returned at 15°C b. Low temperature Refrigerant available at T = -20°C c. Very low temperature Refrigerant available at T = -50°C Cost based on thermal efficiency of fired heater using natural gas a. 90% efficient b. 80% efficient c. Non-hazardous b. Hazardous b. Hazardous c. Primary (filtration) b. Secondary (filtration + activated sludge) c. Tertiary (filtration, activated

Cooling Water

Cooling Water

- Make up based on ΔT (40 30)!
- Should charge cw based on energy used
 - **◆** Table 6.3
- Does not matter (much) if cw returned at 40°C or 45°C – same energy
- 45°C is absolute max due to fouling

Cooling Water

Example 6.3

Estimate the utility cost for producing a circulating cooling water stream using a mechanical draft cooling tower. Consider a basis of 1 GJ/h of energy removal from the process units. Flow of cooling water required to remove this energy = \dot{m} kg/h.

An energy balance gives

$$\dot{m}c_p\Delta T = 1 \times 10^9 \Rightarrow (\dot{m})(4180)(40 - 30) = 41,800 \,\dot{m} = 1 \times 10^9 \,\text{J/h}$$

Therefore,
$$\dot{m} = \frac{1 \times 10^9}{41.800} = 23,923 \text{ kg/h}$$

Latent heat of water at average temperature of $35^{\circ}C = 2417 \text{ kJ/kg}$ Amount of water evaporated from tower, W_{tower}

$$W_{tower} = \frac{Heat\ Load}{\Delta H_{vap}} = \frac{1 \times 10^9}{2417 \times 10^3} = 413.7\ kg/h$$

This is (413.7)(100)/(23,923) = 1.73% of the circulating water flowrate.

Typical windage losses from mechanical draft towers are between 0.1 and 0.3% [9, 10], use 0.3%.

Cooling Water

To calculate the blowdown, we must know the maximum allowable salt (inorganics) concentration factor, S, of the circulating water compared with the makeup water. Where S is defined as

$$S = \frac{\text{concentration salts in cooling water loop}}{\text{concentration salts in make-up water}} = \frac{S_{loop}}{S_{in}}$$

Typical values are between 3 to 7 [9]. Here a value of 5 is assumed. By performing a water and salt balance on the loop shown in Figure 6.3, the following results are obtained:

$$W_{MU} = W_{tower} + W_{wind} + W_{BD}$$

$$s_{in}W_{MU} = s_{loop}W_{wind} + s_{loop}W_{BD}$$

Because $s_{loop} = 5s_{in}$, it follows that

$$s_{in}(W_{tower} + W_{wind} + W_{BD}) = s_{loop}W_{wind} + s_{loop}W_{BD}$$

Cooling Water

$$W_{BD} = \frac{s_{in}W_{tower} + W_{wind}(s_{in} - s_{loop})}{s_{loop} - s_{in}} = \frac{s_{in}W_{tower}}{s_{loop} - s_{in}} - W_{wind} = \frac{W_{tower}}{4} - W_{wind} = \frac{1.73\%}{4} - 0.3\% = 0.133\%$$

$$W_{MU} = 1.73 + 0.3 + 0.133 = 2.163\% = 517 \text{kg/h}$$

Pressure drop around cooling water loop is estimated as follows, $\Delta P_{loop} = 15$ psi (pipe losses) + 5 psi (exchanger losses) + 10 psi (control valve loss) + 8.7 psi of static head (because water must be pumped to top of cooling water tower estimated to be 20 ft above pump inlet) = 38.7 psi = 266.7 kPa.

Power required for cooling water pumps with a volumetric flow rate \dot{V} , assuming an overall efficiency of 75%, is

Pump Power =
$$\frac{1}{\varepsilon} \dot{V} \Delta P = \frac{1}{(0.75)} \frac{(23,923)}{(1000)(3600)} (266.7) = 2.36 \text{ kW}$$

Power required for fans:

From reference [11], the required surface area in the tower = $0.5 \text{ ft}^2/\text{gpm}$ (this assumes that the design wet-bulb air temperature is 26.7°C [80°F]). From the same reference, the fan horsepower per square foot of tower area is 0.041 hp/ft^2 .

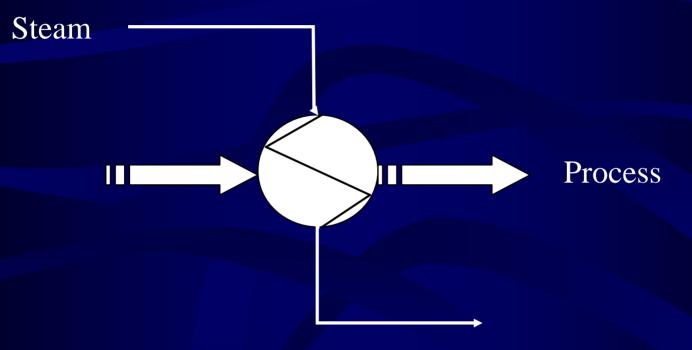
Power for fan =
$$\frac{(23,923)(2.2048)}{(60)(8.337)}(0.5)(0.041) = (2.16)(0.746) = 1.61 \text{ kW}$$

Cooling Water

From a survey of vendors, the cost of chemicals is \$0.156/1000 kg of makeup water.

Using an electricity cost of \$0.06/kWh and a process water cost of \$0.067/1000 kg, the overall cost of the cooling water is given by:

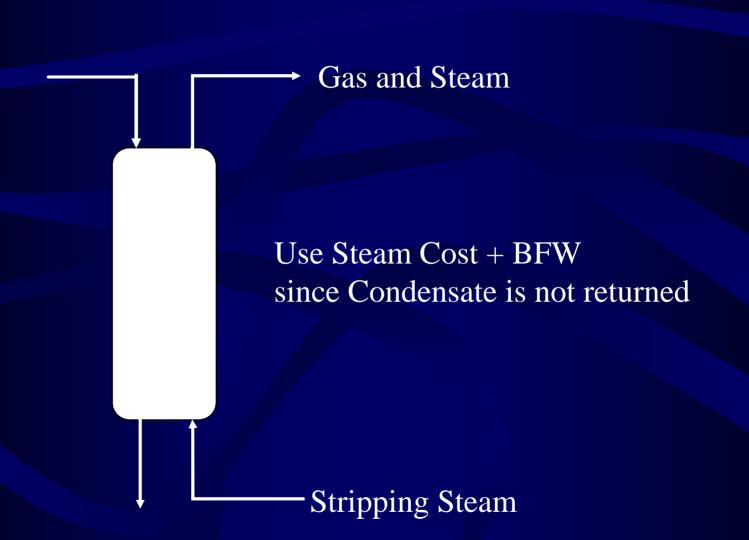
Cost of cooling water = cost of electricity + cost of chemicals for make-up water + cost of make-up water


Using the cost values for electricity and process water given in Table 6.3:

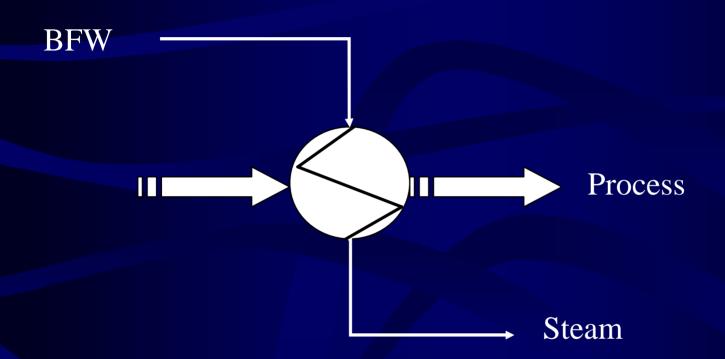
Cooling water cost =
$$(0.06)(2.36 + 1.61) + \frac{(517.3)(0.156)}{1000} + \frac{(517.3)(0.067)}{1000}$$

= $$0.354/hr = $0.354/GJ$

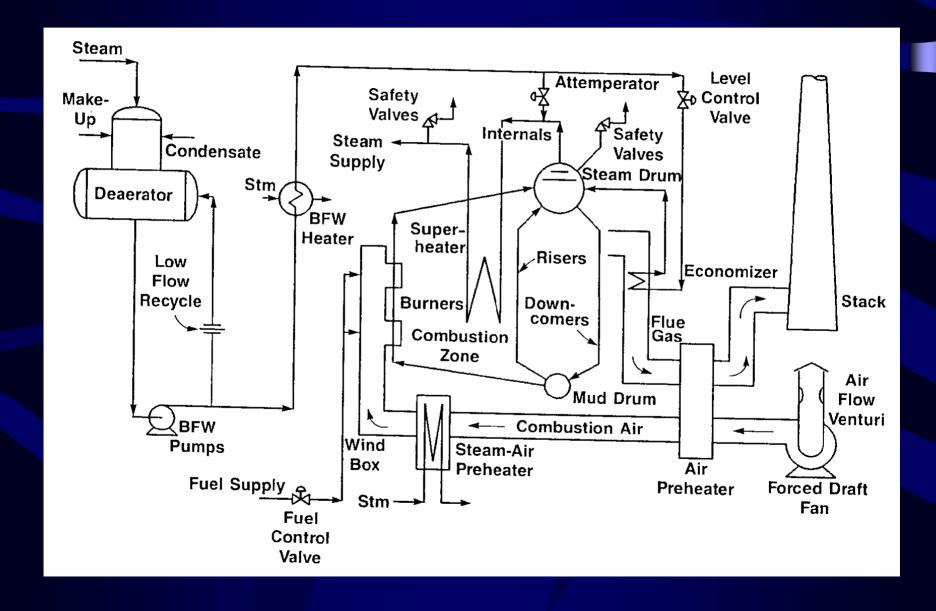
- Pressure Levels
 - ◆ Low (30 90 psi)
 - ◆ Medium (150 250 psi)
 - ◆ High (525 680 psi)
- Available saturated but sometimes superheated

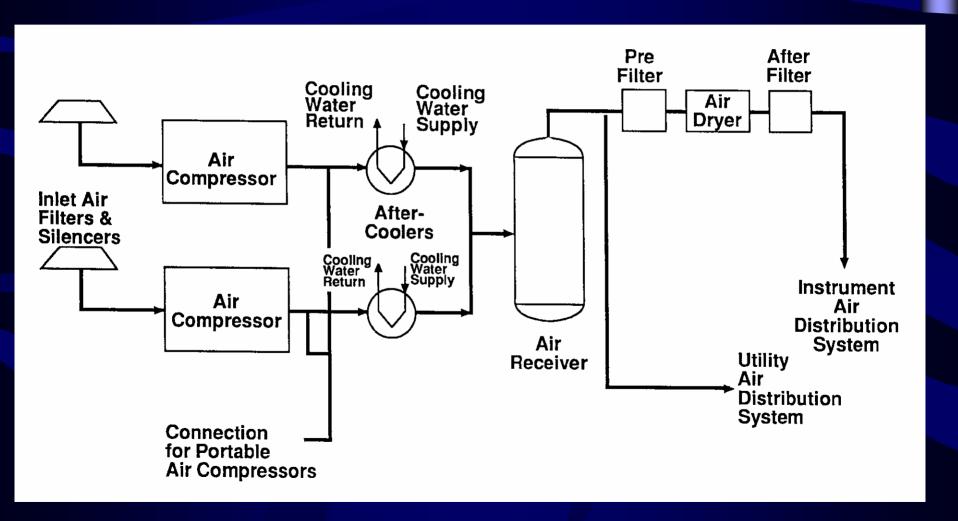

- Large chemical complexes generate high pressure steam and use excess pressure to generate electricity – Figure 6.6.
- Steam can be used as a drive medium for compressors and pumps

Steam



Condensate returned to steam generating systems


* Just use Steam Costs


Steam

* Just Take Credit for Steam – unless Steam is lost in Process

Compressed Air

