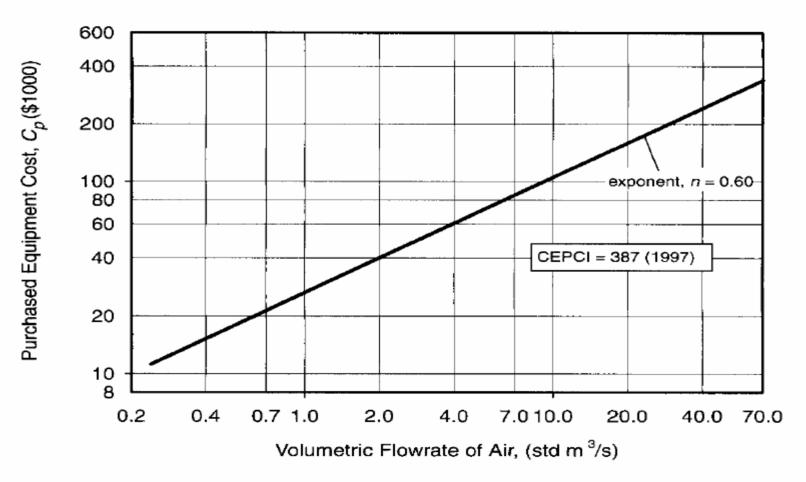
# Chapter 5 Lecture # 2-4

- Estimating Purchased Equipment Costs
  - Effect of Capacity.
  - Effect of time.

- Vendor quote
  - Most accurate
    - based on specific information
    - requires significant engineering
- Use previous cost on similar equipment and scale for time and size
  - Less accurate
    - beware of large extrapolation
    - beware of foreign currency
- Use cost estimating charts and scale for time
  - Reasonably accurate
  - Convenient

$$\frac{C_a}{C_b} = \left(\frac{A_a}{A_b}\right)^n \tag{5.1}$$


where: A = Equipment cost attribute C = Purchased cost

n = Cost exponent

Subscripts: *a* refers to equipment with the required attribute *b* refers to equipment with the base attribute

$$C_a = KA_a^n$$

$$K = \frac{C_b}{A_b^n}$$



**Figure 5.1** Purchased Cost of a Centrifugal Air Blower (Data from Reference [3])

Table 5.3 Typical Values of Cost Exponents for a Selection of Process Equipment

| Equipment Type                             | Range of<br>Correlation | Units of Capacity | Cost Exponent <i>n</i> |
|--------------------------------------------|-------------------------|-------------------|------------------------|
| Reciprocating compressor with motor drive  | 0.75 to 1490            | kW                | 0.84                   |
| Heat exchanger shell and tube carbon steel | 1.9 to 1860             | $m^2$             | 0.59                   |
| Vertical tank carbon steel                 | 0.4 to 76               | $m^3$             | 0.30                   |
| Centrifugal blower                         | 0.24 - 71               | std $m^3/s$       | 0.60                   |
| Jacketed kettle glass lined                | 0.2 to 3.8              | $m^3$             | 0.48                   |

- n = 0.4 0.8 Typically
- ☐ Often  $n \sim 0.6$  and we refer to Eq.(5.1) as the (6/10)'s Rule
  - Assume all equipment have n = 0.6 in a process unit and scale-up using this method for whole processes
  - Order-of-Magnitude estimate

### **Effect of Capacity**

### Example 5.3

Use the six-tenths-rule to estimate the % increase in purchased cost when the capacity of a piece of equipment is doubled.

Using Equation 5.1 with n = 0.6:

$$C_a/C_b = (2/1)^{0.6} = 1.52$$

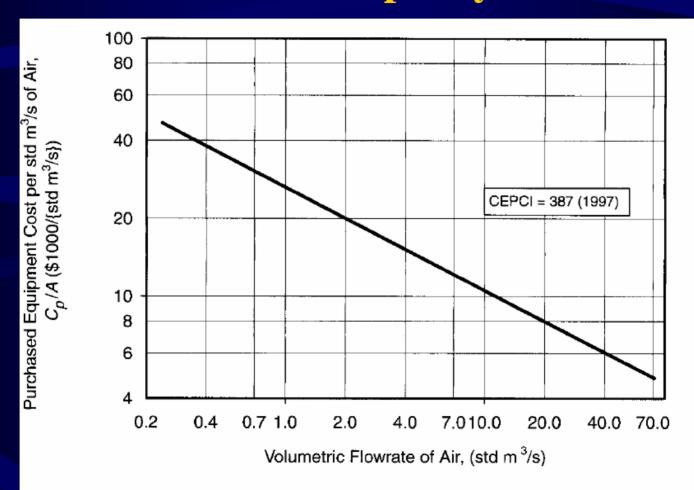
% increase = 
$$((1.52 - 1.00)/1.00)(100) = 52\%$$

The larger the equipment, the lower the cost of equipment per unit of capacity.

#### Example 5.4

Compare the error for the scale-up of a heat exchanger by a factor of 5 using the six-tenth-rule in place of the cost exponent given in Table 5.3.

Using Equation 5.1:


Cost ratio using six-tenth-rule (i.e. n = 0.60) =  $5.0^{0.60} = 2.63$ 

Cost ratio using (n = 0.44) from Table  $5.3 = 5.0^{0.59} = 2.58$ 

% Error = ((2.63 - 2.58)/2.58)(100) = 1.9 %

Another way of looking at economy of scale

$$\frac{C}{A} = KA^{n-1}$$



**Figure 5.2** Purchased Cost per Unit of Flowrate of a Centrifugal Air Blower (Data from Reference [3])

### Economy of Scale

#### Example 5.5

The purchased cost of a recently acquired heat exchanger with an area of 100 m<sup>2</sup> was \$10,000.

#### Determine:

- **a.** the constant *K* in Equation 5.2
- **b.** the cost of a new heat exchanger with area equal to 180 m<sup>2</sup>.

From Table 5.3: n = 0.59: for Equation 5.2:

**a.** 
$$K = C_b/(A_b)^n = 10,000/(100)^{0.59} = 661 \{\$/(m^2)^{0.59}\}$$

**b.** 
$$C_a = (661)(180)^{0.59} = $14,200$$

- Time increases cost increases (inflation)
- ☐ Inflation is measured by cost indexes Figure 5.3
  - Chemical Engineering Plant Cost Index (CEPCI)
  - Marshall and Swift Process Industry Index
- Numbers based on "basket of goods" typical for construction of chemical plants Table 5.5

#### **Effect of Time**

$$C_2 = C_1 \left(\frac{I_2}{I_1}\right)$$

where: C = Purchased CostI = Cost Index

subscripts: 1 refers to base time when cost is known 2 refers to time when cost is desired

#### **Effect of Time**

Table 5.4 Values for the Chemical Engineering Plant Cost Index and the Marshall and Swift Equipment Cost Index from 1986 to 2001

| Year             | Marshall & Swift Equipment<br>Cost Index | Chemical Engineering Cost<br>Index |
|------------------|------------------------------------------|------------------------------------|
| 1986             | 817                                      | 318                                |
| 1987             | 814                                      | 324                                |
| 1988             | 852                                      | 343                                |
| 1989             | 895                                      | 355                                |
| 1990             | 915                                      | 358                                |
| 1991             | 931                                      | 361                                |
| 1992             | 943                                      | 358                                |
| 1993             | 964                                      | 359                                |
| 1994             | 993                                      | 368                                |
| 1995             | 1028                                     | 381                                |
| 1996             | 1039                                     | 382                                |
| 1997             | 105 <i>7</i>                             | 387                                |
| 1998             | 1062                                     | 390                                |
| 1999             | 1068                                     | 391                                |
| 2000             | 1089                                     | 394                                |
| 2001 (September) | 1094                                     | 397                                |

#### **Effect of Time**

Table 5.5 The Basis for the Chemical Engineering Plant Cost Index

| Components of Index                            | Weighting of Com | ponent (%)   |
|------------------------------------------------|------------------|--------------|
| Equipment, Machinery, and Supports:            |                  |              |
| (a) Fabricated equipment                       | 37               |              |
| (b) Process machinery                          | 14               |              |
| (c) Pipe, valves, and fittings                 | 20               |              |
| (d) Process instruments and controls           | 7                |              |
| (e) Pumps and compressors                      | 7                |              |
| (f) Electrical equipment and materials         | 5                |              |
| (g) Structural supports, insulation, and paint | <u>10</u>        |              |
|                                                | 100              | 61% of total |
| Erection and installation labor                |                  | 22           |
| Buildings, materials, and labor                |                  | 7            |
| Engineering and supervision                    |                  | _10          |
| Total                                          |                  | 100          |

#### **Effect of Time**

#### Example 5.6

The purchased cost of a heat exchanger of 500 m<sup>2</sup> area in 1990 was \$25,000.

- **a.** Estimate the cost of the same heat exchanger in 2001 using the two indices introduced above.
- **b.** Compare the results.

| From Table 5.4:                       | 1990 | 2001 |
|---------------------------------------|------|------|
| Marshal and Swift Index               | 915  | 1094 |
| Chemical Engineering Plant Cost Index | 358  | 397  |

- **a.** Marshal and Swift: Cost = (\$25,000)(1094/915) = \$29,891Chemical Engineering: Cost = (\$25,000)(397/358) = \$27,723
- **b.** Average Difference: ((\$29,891 27,723)/((\$29,891 + 27,723)/2)(100) = 7.5%

#### Example

2 heat exchangers, 1 bought in 1990 and the other in 1995 for the same service

|        | a                 | b                  |
|--------|-------------------|--------------------|
| Area = | 70 m <sup>2</sup> | 130 m <sup>2</sup> |
| Time = | 1990              | 1995               |
| Cost = | 17 K              | 24 K               |
| 1 =    | 358               | 381                |

What is the Cost of a 80 m<sup>2</sup> Heat Exchanger In 2003 ? (I = 402)

Must First Bring Costs to a Common Time

$$C_a(2003) = 17 \left(\frac{402}{358}\right) = 19.089$$

$$C_b(2003) = 24 \left(\frac{402}{381}\right) = 25.323$$

$$C = KA^n$$

$$19.089 = K(70)^n$$

$$25.323 = K(130)^n$$

$$n = \frac{\log(25.323) - \log(19.089)}{\log(130) - \log(70)} = 0.4565$$

$$K = \frac{C}{A^n} = \frac{19.089}{70^{0.4565}} = \$2.745$$

$$C = 2.745(80)^{0.4565} = $20.288 = $20,290$$