Chapter 2 Lecture # 2-3

• The Input-Output Structure of the Process (Part 2).

Other Consideration for the Input – Output Structure of the Process Flowsheet

Feed Purity and Trace Components

Small Quantities and "Inerts" – Do Not Separate

E.g. H_2 in feed to THDA process contains CH_4

CH₄ does not react

so, do not remove

Other Consideration for the Input – Output Structure of the Process Flowsheet

If Separation of Impurities is Difficult – Do Not Separate

Azeotrope – (water and ethanol)

Gases – (requires high P and low T)

If impurities foul or poison catalyst then <u>separate</u>

- Sulfur Group VIII Metals such as iron, nickel, and platinum
- A guard bed of activated carbon (or Zinc Oxide) is placed upstream of the reactor for protection

Other Consideration for the Input – Output Structure of the Process Flowsheet

If impurity reacts to form difficult-to-separate material or hazardous product then <u>separate</u>

If impurity is in large quantities then *purify* the feed.

ADD MATERIAL TO FEED

Stabilize Products

Enable Separation/Minimize Side Reactions

Anti-Oxidants and Scavengers

Solvents and Catalysts

ADD MATERIAL TO FEED

Control Exothermic Reactions

Steam for oxidation reactions

Control Equilibrium

Adding inerts shifts equilibrium to the right

Example: styrene reaction

 $C_6H_5CH_2CH_3 \leftarrow \rightarrow C_6H_5CHCH_2 + H_2$

Information Obtained From Input-Output Diagram

Basic economic analysis on profit margin.

What chemical components must enter with the feed and leave as products.

All the reactions, both desired and undesired, that take place.

Profit Margin (PM)

PM = Value of products – Cost of raw materials

• If PM < 0, then don't bother to pursue this process but start looking for an alternate route

Toluene HDA vs. Toluene Disproportionation

 $C_6H_5CH_3 + H_2 \rightarrow C_6H_6 + CH_4$

Toluene

benzene

Toluene used more efficiently

 $2C_6H_5CH_3 \rightarrow C_6H_6 + C_6H_4(CH_3)_2$

Toluene benzene xylene

Profit Margin (PM)

Some processes are more sensitive to product and feed prices than others.

Average cost data over a period of several years should be used in evaluating PM.

Cost of raw materials play a role in deciding which chemical path to choose to produce a given product.

Example 2.1

Evaluate the profit margin for the HDA process.

From Tables 6.3 and 6.4 (Year 2001) Benzene = \$ 0.349/kg Toluene = \$ 0.322/kg

Natural gas (methane and ethane, MW =18) = \$ 6.00/GJ = \$ 6.7/1000 std. ft' = \$ 0.293/kg Hydrogen = \$ 0.721 /kg

Using 1 kmol of toluene feed as a basis

Example 2.1 (cont.)

Consider 1993 prices

<u>Cost of Raw Materials</u> 92 kg of Toluene = (92 kg)(\$ 0.24 kg) = \$ 22.082 kg of Hydrogen = (2 kg)(\$ 0.312/kg) = \$ 0.624

Value of Products78 kg of Benzene = (78 kg)(\$ 0.27 / kg) = \$ 21.0616 kg of Methane = (16 kg)(\$ 0.126 / kg) = \$ 2.016

 $\frac{Profit Margin}{Profit Margin} = (21.06 + 2.016) - (22.08 + 0.644) = \$ 0.372 \text{ or} \\ \$ 0.0040/\text{kg of toluene}$

Conclusion

This is significantly lower than the 2001 margin. Production of benzene via the HDA of toluene would probably not be economical

Example 2.2

Evaluate the profit margin for the toluene disproportionation process.

From Tables 6.4 (Year 2001) Mixed Xylenes = 0.323 \$/kg Using 2 kmols of toluene feed as a basis

<u>Cost of Raw Materials</u> 184 kg of Toluene = (184 kg)(\$0.322/kg) = \$ 59.25

Value of Products

78 kg of Benzene = (78 kg)(\$0.349/kg) = \$27.22106 kg of xylene = (106 kg)(\$0.323/kg) = \$34.24

Example 2.2

<u>Margin</u> Profit Margin = 34.24 + 27.22 - 59.25 = \$ 2.21 or \$ 0.012/kg toluene feed

Currently this process is significantly better than the hydrodealkylation process.

Year 1993

Mixed Xylenes = 0.323 %/kg Margin = (78)(0.27) + (106)(0.25) - (184)(0.24) = \$ 3.4 or \$ 0.0185/kg of toluene

We conclude that the margin for the disproportionation process is significantly less sensitive to product and feed prices than is the hydrodealkylation process.