Chapter 1 Lecture # 2-3

Process Flow Diagram (PFD)

A PFD contains the bulk of the Chemical Engineering data necessary for the design of a chemical process.

Information given in a PFD

- All major pieces of equipments in the process will be represented along with a descriptive name and number.
- All process flow streams will be shown and identified with a number. A description of the process conditions and chemical composition of each stream will be included
- All utility streams supplied to major equipment that provides a process function will be shown.
- Basic control loops will be shown.

Basic Information Provided by a PFD

Process Topology

Stream Information

Equipment Information

Process Topology

The location of and interaction between equipment and process streams is referred to as the process topology.

Symbols for Drawing PFD

Conventions Used for Identifying Process Equipment

Process Equipment	General Format XX-YZZ A/B				
	XX are the identification letters for the equipment classification				
	C - Compressor or Turbine				
	E - Heat Exchanger				
	H - Fired Heater				
	P - Pump				
	R - Reactor				
	T - Tower				
	TK - Storage Tank				
	V - Vessel				
	Y designates an area within the plant				
	ZZ are the number designation for each item in an equipment class				
	A/B identifies parallel units or backup units not shown on a PFD				
Supplemental Information	Additional description of equipment given on top of PFD				

Numbering of Equipment

- XX-YZZ A/B/...
 - XX represents a 1- or 2-letter designation for the equipment (P = pump)
 - Y is the 1 or 2 digit unit number (1-99)
 - ZZ designates the equipment number for the unit (1-99)
 - A/B/... represents the presence of spare equipment

Example

- Equipment T-905 is the 5th tower in unit nine hundred. Equipment P-301 A/B is the 1st Pump in unit three hundred plus a spare XX-YZZ A/B/...
- Use unambiguous letters for new equipment
 - Example: Turbine use Tb or J not T (for tower)
 - Replace old vessel V-302 with a new one of different design - use V-319 (say) not V-302 – since it may be confused with original V-302 the presence of spare equipment.

• Number streams from left to right as much as possible

• Horizontal lines are dominant

Add arrows for

- Change in direction
- Inlet of equipment

• Utility streams should use convention given in Table 1.3 (lps, cw, fg, etc)

Table 1.3 Conventions for Identifying Process and Utility Streams

	Process Streams
All con	nventions shown in Table 1.1 apply.
Diamo	and symbol located in flow lines.
Nume	rical identification (unique for that stream) inserted in diamond.
Flow o	direction shown by arrows on flow lines.
	Utility Streams
lps	Low-pressure Steam: 3–5 barg (sat) [‡]
mps	Medium-pressure Steam: 10–15 barg (sat) [‡]
hps	High-pressure Steam: 40–50 barg (sat) [‡]
htm	Heat Transfer Media (Organic): to 400°C
cw	Cooling Water: From cooling tower 30°C returned at less than 45°C ⁺
wr	River Water: From river 25°C returned at less than 35°C
rw	Refrigerated Water: In at 5°C returned at less than 15°C
rb	Refrigerated Brine: In at -45°C returned at less than 0°C
CS	Chemical Waste Water with high COD
SS	Sanitary Waste Water with high BOD, etc.
el	Electric Heat (specify 220, 440, 660V service)
ng	Natural Gas
fg	Fuel Gas
fo	Fuel Oil
fw	Fire Water

[‡]These pressures are set during the p ranges shown.

⁺Above 45°C, significant scaling occurs.

Stream Information

• Since diagrams are small not much stream information can be included

Include important data – around reactors and towers, etc.

- Flags are used see toluene HDA diagram
- Full stream data, as indicated in Table 1.4, are included in a separate flow summary table – see Table 1.5

Stream Information

Essential Information

- Stream Number
- Temperature (°C)
- Pressure (bar)
- Vapor Fraction
- Total Mass Flow Rate (kg/h)
- Total Mole Flow Rate (kmol/h)
- Individual Component Flow Rates (kmol/h)

Optional Information

- Component Mole Fractions
- Component Mass Fractions
- Individual Component Flow Rates (kg/h)
- Volumetric Flow Rates (m3/h)
- Significant Physical Properties
- Density
- Viscosity
- Other
- Thermodynamic Data
- Heat Capacity
- Stream Enthalpy
- K-values
- Stream Name

Stream Information/Flag See Figure 1.5 and 1.6

Stream Information/Flow Summary Table See Table 1.5

17

Stream Number	1	2	3	4	5	6	7	8	9	10
Temperature (°C)	25	59	25	225	41	600	41	38	654	90
Pressure (bar)	1.90	25.8	25.5	25.2	25.5	25.0	25.5	23.9	24.0	2.6
Vapor Fraction	0.0	0.0	1.00	1.0	1.0	1.0	1.0	1.0	1.0	0.0
Mass Flow (tonne/h)	10.0	13.3	0.82	20.5	6.41	20.5	0.36	9.2	20.9	11.6
Mole Flow (kmol/h)	108.7	144.2	301.0	1204.4	758.8	1204.4	42.6	1100.8	1247.0	142.2
Component Mole Flow (kmol/h)										
Hydrogen	0.0	0.0	286.0	735.4	449.4	735.4	25.2	651.9	652.6	0.02
Methane	0.0	0.0	15.0	317.3	302.2	317.3	16.95	438.3	442.3	0.88
Benzene	0.0	1.0	0.0	7.6	6.6	7.6	0.37	9.55	116.0	106.3
Toluene	108.7	143.2	0.0	144.0	0.7	144.0	0.04	1.05	36.0	35.0

Equipment Information

• Equipment are identified by number and a label (name) positioned above the equipment on the PFD

 Basic data such as size and key data are included in a separate table (Equipment Summary Table) Table 1.7 (and Table 1.6) in TBWS

Equipment Information / Equipment Description See Table 1.6

	Equipment Type
	Description of Equipment
	Towers
	Size (height and diameter), Pressure, Temperature
	Number and Type of Trays
	Height and Type of Packing
	Materials of Construction
	Heat Exchangers
T	pe: Gas-Gas, Gas-Liquid, Liquid-Liquid, Condenser, Vaporizer
Р	rocess: Duty, Area, Temperature, and Pressure for both streams
	No. of Shell and Tube Passes
	Materials of Construction: Tubes and Shell
	Tanks
	See vessels
	Vessels
Height, I	Diameter, Orientation, Pressure, Temperature, Materials of Construction
	Pumps
Flow, Discharge	Pressure, Temperature, ΔP , Driver Type, Shaft Power, Materials of Constructi
	Compressors

Actual Inlet Flow Rate, Temperature, Pressure, Driver Type, Shaft Power, Materials of Construction

Heaters (Fired)

Type, Tube Pressure, Tube Temperature, Duty, Fuel, Material of Construction

Others

Provide Critical Information

Equipment Information / Equipment Summary Table See Table 1.7

Vessel	V-101	V-102
Temperature (°C)	55	38
Pressure (bar)	2.0	24
Orientation	Horizontal	Vertical
MOC	CS	CS
Size		
Height/Length (m)	5.9	3.5
Diameter (m)	1.9	1.1
Internals		s.p. (splash plate)

PFD Summary

• PFD, Equipment Summary Table, and Flow Summary Table represent a "true" PFD.

This information is sufficient for a preliminary estimation of capital investment (Chapter 5) and cost of manufacture (Chapter 6) to be made

THANK YOU