Chapter 7 Lecture # 1-3

• Overview of Chapter 7.

• Introduction.

• Interest Rate.

Overview of Chapter 7

Title: Engineering Economic Analysis

Topics:

- Interest Rates
- Cash Flow Diagram
- Depreciation
 - Inflation
- Taxation.

Purpose of Chapter
 To discuss the principles of economic analysis

Importance

 This chapter covers all of the major topics required for completion of the Fundamentals of Engineering (FE) examination.

The goal of any manufacturing company is to make money

Money when invested earns money.

\$1 today is worth more than \$1 in the future.

An *investment* is an agreement between two parties, whereby, one party, the *investor*, provides money, *P*, to a second party, the *producer*, with the expectation that the *producer* will return money, *F*, to the *investor* at some future specified date, where F > P. The terms used in describing the investment are:

- *P* Principal or Present Value
- *F* Future Value
- *n* Years between *F* and *P*

A Typical Financing Scheme for a Chemical Plant

The amount of money earned from the investment

$$E = F - P$$

The yearly earnings rate is

$$i_s = \frac{E}{Pn} = \frac{(F-P)}{Pn}$$

where i_s is termed the simple interest rate. From Equation 7.2, we have:

$$\frac{F}{P} = (1 + ni_s) \text{ or, in general, } \frac{F}{P} = f(n,i)$$
(7.3)

(7.1)

(7.2)

Example 7.2

You decide to put \$1000 into a bank that offers a special rate if left in for two years. After two years you will be able to withdraw \$1150.

- **a.** Who is the producer?
- **b.** Who is the investor?
- **c.** What are the values of *P*, *F*, i_s , and *n*?

- **a.** Producer: The bank has to produce \$150.00 after two years.
- **b.** Investor: You invest \$1000 in an account at the beginning of the two-year period.
- **c.** P = \$1000 (given)
 - *F* = \$1150 (given)
 - n = 2 years (given)
 - From Equation 7.2,
 - $i_s = (\$1150 \$1000)/(\$1000)/(2) = 0.075$ or 7.5% per year

Simple Interest – Annual Basis • Interest paid in any year = Pi_s \bullet Pi_{s} – Fraction of investment paid as interest per year • After *n* years total interest paid = $Pi_{s}n$ • Total investment is worth = $P + Pi_s n$ Could earn interest on earned interest

Compound Interest At time 0 we have P At the end of Year 1, we have $F_1 = P(1 + i)$ At the end of Year 2, we have $F_2 = P (1 + i)^2$ At the end of Year n, we have $F_n = P (1 + i)^n$ or $P = F_n / (1 + i)^n$

SIMPLE INTEREST

$$F_n = P(1 + i_s n)$$

COMPOUND INTEREST

$$F_n = P(1+i)^n$$

(7.4)

Example

How much would I need to invest at 8 % p.a. to yield \$5000 in 10 years ?

i = 0.08 n = 10 $F_{10} = 5000$ $P = \frac{5000}{(1+0.08)^{10}} = \2315.97

Example 7.6

I need to borrow a sum of money (*P*) and have two loan alternatives:

- **a.** I borrow from my local bank who will lend me money at an interest rate of 7% p.a. and pay compound interest.
- **b.** I borrow from "Honest Sam" who offers to loan me money at 7.3% p.a. using simple interest.

In both cases, I need the money for three years. How much money would I need in three years to pay off this loan? Consider each option separately.

<u>Bank</u>: From Equation 7.5 for n = 3 and i = 0.07 we get

 $F_3 = (P)(1 + 0.07)^3 = 1.225 P$

<u>Sam</u>: From Equation 7.4 for n = 3 and i = 7.3 we get

 $F_3 = (P)(1 + (3)(0.073)) = 1.219 P$

Even though Sam stated a higher interest rate to be paid, I would borrow the money from Sam because 1.219P < 1.225P. This was because Sam used simple interest, and the bank used compound interest.

If we have an investment over a period of years, and the interest rate changes each year, then the appropriate calculation for compound interest is given by

$$F_n = P \prod_{j=1}^n (1+i_j) = P(1+i_1)(1+i_2) \cdots (1+i_n)$$
(7.7)

17

Different Time Basis for Interest Calculations

Relates to statement "Your loan is 6 % p.a. compounded monthly"

Define actual interest rate per compounding period as r

 \bullet *i_{nom}* = Nominal annual interest rate

 → m = Number of compounding periods per year (12)

Different Time Basis for Interest Calculations

$$i_{eff}$$
 = Effective annual interest rate

Look at condition after 1 year

$$F_1 = P\left(1 + i_{eff}\right)$$

$$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m - 1$$

Example

Invest \$1000 at 10 % p.a. compounded monthly. How much do I have in 1 year, 10 years?

$$\begin{split} F_1 &= P \bigg(1 + \frac{i_{nom}}{m} \bigg)^m = 1000 \bigg(1 + \frac{0.10}{12} \bigg)^{12} = \$1104.71 \\ i_{eff} &= \bigg(1 + \frac{0.10}{12} \bigg)^{12} - 1 = 0.1047 \\ F_{10} &= P \bigg(1 + i_{eff} \bigg)^{10} = \$2707.04 \end{split}$$

- As m increases, i_{eff} increases
- Is there a limit as *m* goes to infinity?
 Yes continuously compounded interest
 i_{eff} (continuous) = e^{inom} 1

IN COMPARING ALTERNATIVES, THE EFFECTIVE ANNUAL RATE AND NOT THE NOMINAL ANNUAL RATE OF INTEREST MUST BE USED