Chapter 7
Lecture \# 1-3

- Overview of Chapter 7.
- Introduction.
- Interest Rate.

Overview of Chapter 7

Title: Engineering Economic Analysis

Topics:

- Interest Rates

Cash Flow Diagram
Depreciation
Inflation
Taxation.

Introduction

Purpose of Chapter

- To discuss the principles of economic analysis

Importance

- This chapter covers all of the major topics required for completion of the Fundamentals of Engineering (FE) examination.

Introduction

The goal of any manufacturing company is to make money

Low-Value Raw Materials

Chemical Processing
Company

FIigh-Value Chemicals

Introduction

Money when invested earms money.

\$1 today is worth more than \$1 in the future.

Introduction

An invectment is an agreement between two parties, whereby, one party, the investor, provides money, P, to a second party, the producer, with the expectation that the producer will return money, F, to the investor a some future specified date, where $F>P$. The terms used in describing the investment are:

P-Principal or Present Value
F-Future Value
n - Years between F and P

Introduction

A Typical Financing Scheme for a Chemical Plant

Interest Rate

The amount of money earned from the investment

$$
\begin{equation*}
E=F-P \tag{7.1}
\end{equation*}
$$

The yearly earnings rate is

$$
\begin{equation*}
i_{s}=\frac{E}{P n}=\frac{(F-P)}{P n} \tag{7.2}
\end{equation*}
$$

where i_{s} is termed the simple interest rate.
From Equation 7.2, we have:

$$
\begin{equation*}
\frac{F}{P}=\left(1+n i_{s}\right) \text { or, in general, } \frac{F}{P}=f(n, i) \tag{7.3}
\end{equation*}
$$

Interest Rate

Example 7.2

You decide to put $\$ 1000$ into a bank that offers a special aate if left in for two years. After two years you will be able to withdraw $\$ 1150$.
a. Who is the producer?
b. Who is the investor?
c. What are the values of P, F, i_{s}, and n ?

Interest Rate

a. Producer: The bank has to produce $\$ 150,00$ atter two years.
b. Investor: You invest $\$ 1000$ in an account at the beginning of the two-year period.
c. $P=\$ 1000$ (given)
$F=\$ 1150$ (given)
$n=2$ years (given)
From Equation 7.2,
$i_{8}=(\$ 1150-\$ 1000) /(\$ 1000) /(2)=0.075$ or 7.5% per year

Interest Rate

- Simple Interest - Annual Basis
- Interest paid in any year $=P i_{s}$
- $P i_{s}$ - Fraction of investment paid as interest per year
- After n years total interest paid $=P i_{s} n$
- Total investment is worth $=P+P i_{s} n$
- Could earn interest on earned interest

Interest Rate

- Compound Interest

At time 0 we have P
At the end of Year 1, we have $F_{1}=P(1+i)$
At the end of Year 2, we have $F_{2}=P(1+i)^{2}$

At the end of Year n, we have $F_{n}=P(1+i)^{n}$ or $P=F_{n} /(1+i)^{n}$

Interest Rate

SIMPLE INTEREST

$$
F_{n}=P(1+i n)
$$

(7.4)

COMPOUND INTEREST

$$
F_{n}=P(1+i)^{n}
$$

Interest Rate

Example

How much would I need to invest at 8 \% p.a. to yield $\$ 5000$ in 10 years?

$$
\begin{aligned}
& i=0.08 \\
& n=10 \\
& F_{10}=5000 \\
& P=\frac{5000}{(1+0.08)^{10}}=\$ 2315.97
\end{aligned}
$$

Interest Rate

Example 7.6

I need to borrow a sum of money (P) and have two loan alternatives:
a. I borrow from my local bank who will lend me money at an interest rate of 7% p.a. and pay compound interest.
b. I borrow from "Honest Sam" who offers to loan me money at 7.3\% p.a. using simple interest.

In both cases, I need the money for three years. How much money would I need in three years to pay off this loan? Consider each option separately.

Interest Rate

> Bank: From Equation 7.5 for $n=3$ and $i=0.07$ we get
> $F_{3}=(P)(1+0.07)^{3}=1.225 \mathrm{P}$
> Sam: From Equation 7.4 for $n=3$ and $i=7.3$ we get
> $F_{3}=(P)(1+(3)(0.073))=1.219 \mathrm{P}$

Even though Sam sated a higher intereses rate to be paid, I would borrow the money from Sam because 1.219p < 1.225P. This was because Sam used simple interest, and the bank used compound interest.

Interest Rate

If we have an investment over a period of years, and the interest rate changes each year, then the appropriate calculation for compound interest is given by

$$
F_{n}=P \prod_{j=1}^{n}\left(1+i_{j}\right)=P\left(1+i_{i}\right)\left(1+i_{2}\right) \cdots\left(1+i_{n}\right)
$$

Interest Rate

Different Time Basis for Interest Calculations

- Relates to statement "Your loan is 6 \% p.a. compounded monthly"
- Define actual interest rate per compounding period as r
$\bullet i_{\text {nom }}=$ Nominal annual interest rate
- $m=$ Number of compounding periods per year (12)

Interest Rate

Different Time Basis for Interest Calculations

- $i_{\text {eff }}=$ Effective annual interest rate

$$
r=\frac{i_{\text {nom }}}{m}
$$

- Look at condition after 1 year

$$
F_{1}=P\left(1+i_{\text {eff }}\right)
$$

Interest Rate

Example

Invest $\$ 1000$ at 10% p.a. compounded monthly. How much do I have in 1 year, 10 years?

$$
\begin{aligned}
& F_{1}=P\left(1+\frac{i_{\text {nom }}}{m}\right)^{m}=1000\left(1+\frac{0.10}{12}\right)^{12}=\$ 1104.71 \\
& i_{\text {eff }}=\left(1+\frac{0.10}{12}\right)^{12}-1=0.1047 \\
& F_{10}=P\left(1+i_{\text {eff }}\right)^{10}=\$ 2707.04
\end{aligned}
$$

Interest Rate

- As m increases, $i_{\text {eff }}$ increases
- Is there a limit as m goes to infinity?
- Yes - continuously compounded interest
$\star i_{\text {eff }}($ continuous $)=\mathrm{e}^{\mathrm{inom}}-1$

Interest Rate

IN COMPARING ALTERNATIVES, THE EFFECTIVE ANNUAL RATE AND NOT THE NOMINAL ANNUAL RATE OF INTEREST MUST BE USED

