CHE 402 Kinetics & Reactor Design

Announcements

Quiz

Oct. 29th

Material: Chapters 1&2

Reactor Sizing

Numerical Evaluation of Integrals

■ The integral to calculate the PFR volume can be evaluated using Simpson's One-Third Rule (see Appendix A.4 on p. 1013):

Consider the liquid phase reaction

 $A \longrightarrow Products$

which is to take place in a PFR. The following data was obtained in a batch reactor.

Consider the liquid phase reaction

$$A \longrightarrow Products$$

which is to take place in a PFR. The following data was obtained in a batch reactor.

$$V = F_{A0} \int_0^X \left(\frac{1}{-r_A} \right) dX$$

Consider the liquid phase reaction

which is to take place in a PFR. The following data was obtained in a batch reactor.

$$V = F_{A0} \int_0^X \left(\frac{1}{-r_A} \right) dX$$

Consider the liquid phase reaction

which is to take place in a PFR. The following data was obtained in a batch reactor.

$$V = F_{A0} \int_0^X \left(\frac{1}{-r_A} \right) dX$$

If the molar feed rate of A to the PFR is 2 mol/s, what volume is necessary to achieve 80% conversion under identical conditions as those under which the batch data obtained?

$$F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = F_{A0} \frac{h}{3} [f(X_0) + 4 * f(X_1) + f(X_2)]$$

$$F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = F_{A0} \frac{h}{3} [f(X_0) + 4 * f(X_1) + f(X_2)]$$

$$F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = F_{A0} \frac{h}{3} [f(X_0) + 4 * f(X_1) + f(X_2)]$$

$$V = F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = 2 \frac{0.4}{3} [f(0) + 4 * f(0.4) + f(0.8)]$$

$$F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = F_{A0} \frac{h}{3} [f(X_0) + 4 * f(X_1) + f(X_2)]$$

h=0.4 X0=0 X1=0.4 X2=0.8

$$V = F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = 2 \frac{0.4}{3} [f(0) + 4 * f(0.4) + f(0.8)]$$

$$V = F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = 2 \frac{0.4}{3} [100 + 4 *125 + 500]$$

$$F_{A0} \int_{0}^{0.8} \frac{dX}{-r_{A}} = F_{A0} \frac{h}{3} [f(X_{0}) + 4 * f(X_{1}) + f(X_{2})]$$

h=0.4 X0=0 X1=0.4 X2=0.8

$$V = F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = 2 \frac{0.4}{3} [f(0) + 4 * f(0.4) + f(0.8)]$$

$$V = F_{A0} \int_{0}^{0.8} \frac{dX}{-r_A} = 2 \frac{0.4}{3} [100 + 4 *125 + 500]$$

V=293.3 L

Example 2-2 [PFR]

Reactor Sizing-Summary

- Given $-r_A$ as a function of conversion, $-r_A = f(X)$, one can size any type of reactor.
- We do this by constructing a Levenspiel plot.

- Here we plot either $\frac{F_{A0}}{-r}$ or $\frac{1}{-r}$ as a function of X.
- For $\frac{F_{A0}}{-r}$ vs. X, the volume of a CSTR is:

$$V = \frac{F_{A0}(X-0)}{-r_{\Delta}|_{DAME}}$$

 $V = \frac{F_{A0}(X-0)}{-r_A|_{EXIT}}$ • For $\frac{F_{A0}}{-r_A}$ vs. X, the volume of a PFR is:

$$V_{PFR} = \int_0^X \frac{F_{A\,0}}{-r_A} dX$$
 = area under the curve

Equivalent to area of rectangle on a Levenspiel Plot

PFR

Reactor Staging

Reactors In Series

 $X_i = \frac{\text{moles of A reacted up to point i}}{\text{moles of A fed to first reactor}}$

Only valid if there are no side streams

Reactors In Series $X_i = \frac{\text{moles of A reacted up to point i}}{\text{moles of A fed to first reactor}} \quad \textit{Only valid if}$

Only valid if there are no side streams

Consider a PFR between two CSTRs

Reactors In Series

 $X_i = \frac{\text{moles of A reacted up to point i}}{\text{moles of A fed to first reactor}}$

Only valid if there are no side streams

Consider a PFR between two CSTRs

Reactors in Series

Also consider a number of CSTRs in series:

Reactors in Series

Finally consider a number of CSTRs in series:

We see that we approach the PFR reactor volume for a large number of CSTRş in series:

