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Abstract: The optimal temperature policy that maximizes
the time-averaged productivity of a continuous immobi-
lized enzyme packed bed reactor is determined. This
optimization study takes into consideration the enzyme
thermal deactivation with substrate protection during the
reactor operation. The general case of reversible Micha-
elis—-Menten kinetics under constant reactor feed flow
rate is assumed. The corresponding nonlinear optimiza-
tion problem is solved using the calculus of variations by
applying the disjoint policy. This policy reduces the op-
timization problem into a differential-algebraic system,
DAE. This DAE system defines completely the optimal
temperature-time profiles. These profiles depend on the
kinetic parameters, feed substrate concentration, oper-
ating period, and the residence time and are character-
ized by increasing form with time. Also, general
analytical expressions for the slopes of the temperature
and residual enzyme activity profiles are derived. An ef-
ficient solution algorithm is developed to solve the DAE
system, which results into a one-dimensional optimiza-
tion problem with simple bounds on the initial feed
temperature. The enzymatic isomerization of glucose
into fructose is selected as a case study. The computed
productivities are very close to that obtained by numer-
ical nonlinear optimization with simpler problem to
solve. Moreover, the computed conversion profiles are
almost constant over 90% of the operating periods, thus
producing a homogeneous product. © 2002 John Wiley &
Sons, Inc. Biotechnol Bioeng 77: 163-173, 2002.

Keywords: optimal temperature policy; Michaelis—-Men-
ten kinetics; disjoint policy

INTRODUCTION

The problem of optimal operating policy for immobi-
lized enzyme packed bed reactors is a subject of vast
operational research due to the economical potential of
characterizing such optimal operations. This optimal
operating policy can be practically achieved in mainly
two control modes of reactor operation. The first one is
the control of feed rate to the reactor in such a way that
it decreases as function of time in order to compensate
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for the loss of enzyme activity. The second mode is the
temperature and/or pH profile that is set according to a
well-defined time profile (Faqir, 1998; Haas et al., 1974;
Kim et al., 1982; Park et al., 1981; Straatsma et al., 1983;
Vos and Luyben, 1993). Temperature is one of the most
important variables due to its effect on the kinetic pa-
rameters, enzyme activity, and substrate protection
factor. However, one limitation of this control variable
is the narrow range within which enzymes remain active
(Lee, 1992). In spite of this, many researchers have used
two types of temperature operating policies utilizing the
enzymatic isomerization of glucose to fructose as a
model system (Abu-Reesh and Faqir, 1996; Faqir, 1998;
Hass et al., 1974; Kim et al., 1982; Park et al., 1981;
Straatsma et al., 1983). These operating policies are ei-
ther a rising temperature policy with time to maintain a
constant outlet conversion or a constant temperature
profile that maximizes the average reactor productivity.
Park et al., (1981) studied the temperature control policy
for the enzymatic isomerization of glucose to fructose
using immobilized glucose isomerase in a continuous
packed bed reactor. They found that the average pro-
ductivity is improved by approximately 8% upon using
the optimal increasing temperature policy of operation
as compared to the optimum isothermal operation.

Most of the published works on determining the opti-
mum temperature operating policy for continuous packed
bed reactors performing reversible Michaelis—Menten
kinetics use either Pontryagin’s maximum principle or
nonlinear programming methods (Faqir, 1998; Haasetal.,
1974; Kim et al., 1982; Park et al., 1981; Straatsma et al.,
1983; Vos and Luyben, 1993). The main disadvantages of
these optimization methods are the tedious formulation
and complex solution algorithms used to obtain the de-
sired solution. Moreover, they lack general applicability
when applied to the same class of problems.

The present work deals with the optimization of con-
tinuous immobilized enzyme packed bed reactors under
constant feed flow rate. For such reactors, the optimal



temperature—time policy is determined such that the
time-averaged reactor productivity is maximized. The
corresponding nonlinear optimization problem is solved
using the calculus of variations and, in particular, by
applying the disjoint policy. The problem solution using
the disjoint policy proceeds in the most general form to
cover any operational problem of immobilized packed
bed reactor using reversible Michaelis—Menten kinetics
with substrate protection. In this way the optimization
problem is reduced to the solution of a differential al-
gebraic system, DAE. Two coupled nonlinear ordinary
differential equations plus a nonlinear algebraic equation
represent this DAE system. These equations define
completely the temperature—time profile over the oper-
ating period of the reactor. This profile is optimal and is
dependent only on the kinetic parameters, the feed sub-
strate concentration, the operating period, and the resi-
dence time. An efficient solution algorithm is developed
to solve the DAE system, which results into a one-di-
mensional optimization problem with simple bounds on
the initial feed temperature. The isomerization of glucose
to fructose using the immobilized enzyme glucose isom-
erase (IGI) is chosen as a model system to conduct nu-
merical computations. This reaction is considered as one
of the most important industrial applications of immo-
bilized enzyme reactors (Illanes et al., 1992).

PROBLEM FORMULATION USING THE
CALCULUS OF VARIATIONS

Reaction Kinetics

Most enzyme-catalyzed reactions are reversible in their
nature, following a reaction sequence that involves rapid
complex formation resulting from enzyme and substrate
interaction. This is followed by a slow step with product
liberation. When the two steps are reversible, the reac-
tion mechanism is called reversible Michaelis—Menten
kinetics and is represented by (Lee, 1992)

E+S<k:>ES<:>E+P (1)
1 ks

The rate of reaction following quasi-steady state
mechanism, with no initial product in the feed, is given
by (Abu-Reesh and Faqir, 1996; Park et al., 1981)
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Eq. (2) can be rearranged to
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where k = V,/Ky and K, = 1/K,

If it happens at some operating temperature, 7, that
K, =K, then K = 0 and V/;;, — o, but the ratio V},,/Ky,
remains finite. Accordingly, Eq. (3) is reduced to a
pseudo-first order reversible reaction (Abu-Reesh, 1996;
Palazzi and Converti, 1999). At this special case the com-
plex concentration, Cgg, starts from 0 and when ¢ — oo,
Cgs approaches a constant value. This means that the
reversible Michaelis—Menten reaction follows steady
state mechanism in both forward and reverse directions
and approach equilibrium asymptotically as ¢ — oo
(Keleti, 1986). On the other hand, if K, # K, then the
reaction follows steady state kinetics in forward direc-
tion but not in the reverse one (Keleti, 1986). Recently,
enzyme deactivation with substrate protection is pro-
posed and validated experimentally for a specific case of
immobilized glucose isomerase (Chen and Wu, 1987;
Houng et al., 1993). For the purpose of general deriva-
tion, a first-order reaction mechanism with substrate
protection is assumed to describe the thermal deactiva-
tion of enzyme. This results in the following rate of re-
sidual enzyme activity at any time ¢ (Chen and Wu,
1987):

@:—Kd(l—c)a atr=0,a=1, (4)
dt

where Ky is the enzyme thermal deactivation rate con-
stant given by

Kq = KdoeiE‘i/RT, (5)

and ¢ is the substrate protection factor given by (Chen
and Wu, 1987; Houng et al., 1993):

K, [1 n (1+1<L)} + KK, { S'(14+K, }
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KK 2t K [ 14 259 4 Kok 1 - S
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(6)
where

s = Cso(xe — X), Xe =
x = (Csp — Cs)/Csp.

K./(1+K.), and

The constant # is a factor used to express the ratio of
enzyme—substrate complex to free enzyme deactivation
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rate. This value can be determined experimentally for a
specific reaction following the mechanism represented
by Eq. (1), and it has a value 0 < n < 1. Thus, in the
presence of enzyme deactivation and substrate protec-
tion the reaction rate becomes

Y(x)=r(x) - a (7)

Mathematical Model

In modeling continuous immobilized enzyme packed
bed reactors, the following simplifying assumptions are
made (Illanes et al., 1992; Roles and Tilberg, 1979;
Vasic-Racki et al., 1991): (1) the flow of substrate
through the reactor is ideal plug flow; (2) the immobi-
lized enzyme effectiveness factor is assumed to be unity
(no diffusional limitations); (3) the enzyme deactivation
is a rather slow process when compared to the mean
residence time of reactants; and (4) the residual enzyme
activity is considered as a weak function of substrate
concentration along the reactor length.

Under these assumed conditions the packed bed de-
sign equation is given by (Abu-Reesh and Faqir, 1996;

Hass et al., 1974)
T dx
— = 0<x<x, 8
CS() /0 r (X) ( )

where 71 is the residence time in the reactor, and x is the
substrate conversion. Eq. (8) when combined with Eq.
(7) can be reduced to the following algebraic form:

In(1 — x/xe) + kta — K,Csox = 0. 9)

Eq. (9), the reactor design equation, can be solved for
the substrate conversion, x, at any time, ¢, when the
reactor is set into operation at a specified feed rate, feed
substrate concentration, and temperature. The substrate
conversion will decrease as a result of enzyme deacti-
vation as time goes on. This mode of operation neces-
sitates the averaging of conversion over a certain
operating period of time, #, beyond which the falling of
conversion is no longer acceptable. Practically, the av-
eraging of x is equivalent to mixing a product of dif-
ferent levels of conversion over the whole operating
period. Hence, the production performance of the re-
actor is measured by the so called the time-averaged
productivity defined as

n(T) = <CS°>[ / t)dt// dz] (CSO) / x(T, (6))d0,

(10)

where 0 = ¢/t Note that, for a given packed bed reactor
and initial substrate concentration Cgq, the left-hand
side of Eq. (9) can be written in the following functional

form f(x,T) = 0; accordingly we can write the substrate
conversion x as

x = Xe(1 — eFnCsoxpmhra), (11)

Optimization Method

The optimal productivity of an immobilized enzyme
packed bed reactor performing reversible Michaelis—
Menten kinetics with enzyme deactivation represents an
optimal-control problem. This optimal productivity re-
sults from two opposing phenomena: the rate of reac-
tion and the residual enzyme activity. As a result of
temperature increase, the rate of reaction increases while
the residual enzyme activity decreases. The result of
these phenomena can lead to two optimal operational
modes that arise in the operation of packed bed reactors
using immobilized enzymes as catalyst. The first is the
constant feed rate and constant conversion, where the
temperature is increased with time to compensate for the
loss of enzyme activity (Faqir and Abu-Reesh, 1998;
Hass et al., 1974; Kim et al., 1982; Park et al., 1981). In
this mode of operation, the initial temperature must be
selected for each operating period, and the temperature
must be gradually increased to maintain the desired
conversion level. The second mode of operation is the
variable conversion and constant feed rate (Faqir, 1998;
Hass et al., 1974; Kim et al., 1982; Park et al., 1981; Vos
and Luyben, 1993). This mode of operation is charac-
terized by an increasing temperature—time profile start-
ing at the lowest permissible temperature and ending
with the highest physically feasible one. These temper-
ature constraints stem from the loss of enzyme stability
at high temperature and the risk of microbial contami-
nation at low operating temperature (Illanes et al.,
1992). In this operational mode, the objective is to find
an optimal policy that maximizes the average conversion
(productivity). This is in fact, a defined path that must
be described for the operating temperature as a con-
trollable independent variable. This is accomplished by
finding the temperature functional that satisfies the
necessary and sufficient conditions needed to specify the
optimal temperature path. In the present work, the
calculus of variations is used to find such an optimal
temperature—time profile. The advantage of this ap-
proach is that once the solution is obtained it is appli-
cable to an entire class of problems, while the numerical
optimization used to find such profiles (Faqir, 1998;
Kim et al., 1982; Park et al., 1981) involves sophisticated
numerical algorithms.

In the present work, the optimal temperature—time
policy maximizing the reactor productivity under the
second mode of operation is derived. The objective is to
investigate how temperature should be varied with time
in order to maximize the time-averaged productivity.
For a specified residence time, t, feed flow rate, and a
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feed substrate concentration, Cgg, the problem of max-
imizing the time-averaged productivity is posed as a
nonlinear optimization problem:

(”<T>=(%) / 1x<T<e>>de) (12)

Maximize

Subject to

S(x,T) =In(1 — x/x¢) + kta — K, SOx = 0,

da

= _ 1 —
0 Kdlf( G)a,

T <1< 7Y forall 0c|o01],

0<x<x, forallel0,1].

To maximize the productivity, n(7T), given by Eq. (12),
we make use of the calculus of variations and, in par-
ticular, by applying the disjoint policy (Denn, 1969).
According to this policy, the temperature profile, 7(0), is
selected in such a way that the integrand at each value of
0 is maximized. In other words, it is sufficient to maxi-
mize x(7(0)) in order to find the optimum productivity
(T). As a result of this policy, the necessary condition of
optimality leads to the following differential-algebraic
system, DAE (see Appendix 1 for the complete deriva-
tion):

dT Ky (1 — o) (aax.)

N - e . R (13)
a9 tox.a ‘”‘QdT + [ L - acslg’\’\eﬁ
where
da
€n- —t:Kq(1 — G)a, (14)
x = xe(l — Ot(x, T>€_km)’ (15)

and a(x,T) = eK'/"CS"x,
with the initial conditions
T=Tyand a=1at 6 =0 with 71, < Ty < Ty.

Note that the disjoint policy has reduced the nonlin-
ear optimization problem given by Eq. (12) into a DAE
given by Egs. (13), (14), and (15). This DAE system
consists of a pair of coupled nonlinear ordinary differ-
ential equations plus a nonlinear algebraic equation,
which defines completely the optimal temperature—time
profiles. The initial temperature, Ty, is chosen such that
the solution of Eqgs. (13), (14), and (15) will satisfy the
optimality condition given by Eq. (19) (see Appendix 1).
One way to find Ty is to solve the DAE system such that
the reactor productivity is maximized. This results into a

one-dimensional optimization problem with simple
bounds on Ty, which can be stated as

Maximize 7(7y). (16)

T-<Ty<TY
The objective function evaluation of the one-dimen-
sional problem requires the solution of one nonlinear
algebraic equation plus two ordinary first-order differ-
ential equations. Note that numerical algorithms are
well established for the solution of the above one-di-
mensional optimization problem given by Eq. (16)
(Edgar and Himmelblau, 1988). Moreover, the disjoint
policy has produced the slopes of the temperature and
residual enzyme activity profiles explicitly as given by
Eqgs. (13) and (14). The system of equations, Egs. (13),
(14), and (15), defines completely the optimal tempera-
ture—time profiles. The residual enzyme profile is a de-
creasing profile with respect to time since 0 < o < 1
(Chen and Wu, 1987), and the temperature profile in-
creases with time (d7/d6 > 0) provided that K7, is small
which is the case when K = K,,. These facts are evident
from Egs. (13) and (14).

The solution of Egs. (13), (14), and (15) that satisfy
the optimality condition, the residual enzyme activity,
and reactor design constraints can be found at each in-
stant of dimensionless time 6, specified residence time T,
and inlet substrate concentration Cgq. Hence, this solu-
tion for the optimum substrate conversion x  and op-
erating temperature 7' () is optimal if and only if it
satisfies the proposed constraints. In this way, the opti-
mum productivity, n(7), can be generated. However, at
small values of 0, T"(0) might fall below the lower tem-
perature limit, 7", and as 0 — 1, T"(0) might exceed the
upper limit TY. In this case, T" = min(TU, T*) as — 1,
and T° = max(T", T') as 6 — 0.

Note that Eq. (15) is nonlinear in x, and hence a
suitable iterative technique must be used to solve it. The
fixed-point method could be used here effectively if we
note that at K, = K, then o = I since K/, =0, and so a
good initial guess is obtained from Eq. (15).

The solution algorithm could be summarized as fol-
lows:

(1) Choose an initial operating temperature, Ty, at 0,
such that 7% < Ty < TV and a(0,) =1 at fixed operating
period t;. Compute the kinetic parameters and x..

(2) Use the fixed-point algorithm to solve the alge-
braic Eq. (15) for x using the initial guess:

Xo = X (1 — e7¥),

(3) Solve the ordinary differential equations given by
Egs. (13) and (14) using a suitable integration algorithm
(for example the 4™- and 5"M-order RungeKutta
methods) over the interval 6 € [0, 1]. At each integration
step:

(3.1) Compute the kinetic parameters and x;

(3.2) Use the fixed-point algorithm to solve the alge-
braic Eq. (15) for x using the initial guess: xo = x. (1 —
e—km);
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(3.3) Compare the computed x satisfying the design
Eq. (9) and the critical value of x given by
x =x.+ /K Csy (see Appendix 1). If they are equal,
then the necessary condition for optimality is not satis-
fied, and hence there is no optimal temperature profile in
the entire interval 0 € [0, 1], STOP, and try another
value of fq.

(4) Compute the time-averaged productivity using Eq.
(10).

(5) Use quadratic interpolation as a one-dimensional
search to update 7T, until the optimal temperature is
bracketed within an acceptable tolerance, so that the
time-averaged productivity is maximized (Edgar and
Himmelblau, 1988).

NUMERICAL EXAMPLE

The isomerization of glucose to fructose by immobilized
glucose isomerase (IGI) is selected as a model system to
illustrate the optimal temperature—time profile. This
reaction follows reversible Michaelis-Menten kinetics.
Chamacho-Rubio et al., (1995) reviewed the vast liter-
ature concerning this reaction, which is considered to be
the most important industrial application of immobi-
lized enzymes. Chen and Wu (1987) developed a kinetic
model for immobilized glucose isomerase with substrate
protection. In the present work, the kinetic parameters
for this reaction are determined using Chen’s and Wu’s
(1987) set of experimental data, where they are corre-
lated with temperature using Arrhenius equation
K = Kye B/RTwhere K is a generalized kinetic pa-
rameter, K is the pre-exponential factor, and E, is the
activation energy. The values of the obtained Arrhenius
equation constants using least-squares fit are shown in
Table I. The values of the kinetic parameters K, and K|,
are almost of the same order of magnitude in the range
(60-80°C), and they are equal at 70.1°C (Faqir and
Attarakih, 1999). In fact this is stated by Chamacho-
Rubio et al., (1995) who considered K, and K, to be
equal in magnitude. In this way the reversible Micha-
elis-Menten kinetics is reduced to a pseudo-first order
reversible reaction, a fact that was used by several re-
searchers before Chamacho-Rubio et al., (Roles and
Tilberg, 1979; Straatsma et al., 1983; Vos and Luyben,
1993). Actually, Chamacho-Rubio et al., (1995) showed

Table I. K, and E,/R for reaction kinetic parameters (60-80°C).*

ko E,/R[K]
K, [mol/L] 431.63 2138.0
K, [mol/L] 1.7539 x 10° 7360.94
K. [ 385.71 1996.40
V', [mol/L+h] 1.16968 x 10'° 7163.88
¥, [mol/L-h] 1.55x 10™ 10469.4
Kq [1/h] 6.2717 x 105 20551.81

“Density of the catalyst particle used in calculation = 304.21 g/L
(Abu-Reesh and Faqir, 1996, Chen and Wu, 1987).

that the experimental values of the kinetic parameters Kj
and K, were invariably close and varied randomly re-
gardless of the operating conditions under which these
values had been determined. Palazzi and Converti (1999)
experimentally validated an approximate, linearized,
and general model for this reaction by utilizing the ap-
proximate equality of K and K.

The typical design conditions for immobilized enzyme
packed bed reactor used to convert glucose into fructose
are (Illanes et al., 1992) Cso = 2.8 mol/L, T'= 0.5 and
1.0 h, T8 = 60°C, and TV = 80°C. The factor, n, ap-
pearing in the substrate protection factor expression is
found to be 0.5 for immobilized glucose isomerase en-
zyme (Chen and Wu, 1987). Different operating periods
are used: # = 50, 100, 250, 500, 750, and 1,000 h. The
optimal initial temperature, 70, that maximizes the re-
actor productivity given by Eq. (10) can be found by
solving Eqgs. (13), (14), and (15) using the above design
conditions. The solution proceeds numerically using the
fixed-point iteration method, the fourth- and fifth-order
Runge-Kutta methods with variable integration step,
and the quadratic interpolation search algorithm (Edgar
and Himmelblau, 1988).

For the purpose of method validation, the optimiza-
tion problem given by Eq. (12) is solved as a nonlinear
programming problem, NLP, under constant and vari-
able feed flow rate. In the NLP formulation a piecewise
continuous temperature profile with quadratic segments
is used. The resulting discretized NLP is solved using
GAMS software (Brooke et al., 1992).

RESULTS AND DISCUSSION

The optimal temperature—time profiles and their corre-
sponding reactor productivities are determined by
solving Egs. (13), (14), and (15) using MATLAB at
specified feed substrate concentration Cgy = 2.8 mol/L
and at constant residence times t = 0.5 and 1 h. The
fixed-point iteration scheme described above is found to
converge within 5 iterations per each integration step.
Moreover, the necessary condition of optimality,
(0f(x,T)/0x)T # 0 (see Appendix 1), is found to be always
satisfied during all numerical examples presented in this
work. This means that optimal temperature profiles exist
over the entire operating periods (z; = 50, 100, ..., 1,000
h) for the given residence times. The reactor operating
time period is specified based on the characteristic life
curve of the immobilized enzyme (residual enzyme ac-
tivity curve). The immobilized enzyme is generally re-
placed before complete loss of its residual activity due to
the low enzyme activity and poor reactor performance
resulting from prolonged use of the enzyme at high
temperatures. Therefore, the usable life of the immobi-
lized enzyme should be equal to or less than the reactor
operating period. Thus, the reactor operating time de-
pends on the operating temperature and design criteria.
In running an IGI reactor, a high reaction rate and a
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Table II.
joint policy and numerical NLP.

Time-averaged productivities for t = 0.5 h using the dis-

Maximum average
productivity under

Maximum average
productivity under

Operating temperature—time constant optimum Optimum

period policy temperature policy  temperature
t¢ (h) 7 [mol/L-h] 7 [mol/L-h] T (°C)
50 2.991 (2.990)* 2.955 78.5

100 2.805 (2.804)* 2.724 74.5

250 2.477 (2.478)" 2.374 69.5

500 2.200 (2.196)* 2.094 65.5

750 2.032 (2.028)" 1.930 63.5
1,000 1.914 (1.910)* 1.815 62.0

“Productivity using numerical nonlinear programming under con-
stant and variable feed flow rate.

long operational life of the reactor are desired. At a
higher operating temperature, the reaction rate is higher,
but the deactivation rate of the enzyme is also higher;
thus there exists a shorter reactor life. For example, the
half life of IGI enzyme is 703 h when running the reactor
at 60°C and 21 h at 80°C. While at a final residual en-
zyme activity of 0.1, the operating time will be 2,335 h
and 71 h when the IGI reactor is running at 60 and
80°C, respectively. Therefore, selection of the reactor
operating time depends on the relative costs of the en-
zyme, immobilization support and the operating costs to
clean-out the reactor and recharging it with enzyme.
The productivities are compared to that obtained by
numerical nonlinear programming under constant and
variable feed flow rate at different operating periods as
shown in Tables II and III. As it can be seen from the
results the productivities are almost the same. Note that
the more general optimization problem, where both feed
flow rate and temperature would be varied with time is
formulated in Appendix 2. Accordingly, the formulated
problem is solved as NLP and theoretical analysis based
on the disjoint policy is also performed (see Appendix 2).
The results show that the more general optimization
problem gives the same productivity and temperature

Table III.  Time-averaged productivities for t = 1 h using the dis-
joint policy and numerical NLP.

Maximum average
productivity under

Maximum average
productivity under

Operating temperature—time constant optimum Optimum

period policy temperature policy  temperature
t¢ (h) 7 [mol/L-h] 7 [mol/L-h] T (°C)
50 1.593 (1.592)* 1.592 80.0

100 1.545 (1.545)* 1.528 76.5

250 1.455 (1.456)" 1.420 70.5

500 1.366 (1.364)* 1.321 66.0

750 1.304 (1.301)* 1.255 64.0
1,000 1.256 (1.253)* 1.206 62.0

*Productivity using numerical nonlinear programming under con-

stant and variable feed flow rate.

profile to that obtained under constant feed flow rate and
varying feed temperature. Also, an improvement is
achieved in reactor productivity when compared to the
constant optimal temperature policy (Faqir, 1998). A 5%
improvement is achieved at longer operating time in
comparison with 2% improvement at shorter operating
periods. As it can be seen from the results in Tables 11
and III the productivities are almost the same when
operating the reactor at low operating time periods un-
der constant optimal temperature and variable temper-
ature policies. It is noticed that the variable conversion
policy of operation is characterized by an increasing
temperature—time profiles as found previously by Park et
al., (1981). Figures 1, 2, and 3 depict the temperature,
conversion, and residual enzyme activity profiles. The
temperature profiles hit the upper temperature bound for
small operating periods, while it tends to move away
from it at long operating periods. This behavior is ex-
pected since at long operating periods the immobilized
enzyme could not withstand high temperatures for pro-
longed time without considerable loss of activity. This
fact is evident from Figure 3, where the rate of enzyme
deactivation increases as the dimensionless time and the
operating period increase. The slope of the temperature
profiles increases as the dimensionless time and the op-
erating period increase to balance the degradation of
conversion due to the loss of enzyme activity by in-
creasing the reaction rate. This is obvious by referring to
Figure 2, where the conversion tend to be initially con-
stant and start decreasing, although not so fast, due to
the previously buffering effect. This balance of conver-
sion is clear due to the two opposing phenomena; namely
the reaction rate and the enzyme activity as shown in
Figure 7. The effect of reactor residence time on the
operating temperature, conversion, and residual enzyme
activity profiles is clear by comparing Figures 1, 2, and 3
(t = 0.5h) and Figures 4, 5, and 6 (t = 1.0 h). It is found
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Figure 1. Optimal temperature profiles of glucose isomerase reactor
under temperature—time policy at residence time of 0.5 h.
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Figure 2. Optimal conversion profiles of glucose isomerase reactor
under temperature—time policy at residence time of 0.5 h.

that due to larger residence time, the temperature profiles
are shifted toward the lower temperature bound to
counteract the high rates of enzyme deactivation. It is
evident from Figures 2 and 5 that the optimal tempera-
ture-time policy tends to keep the conversion constant
over almost 90% of the operating period. This behavior
is in agreement with the necessary condition of opti-
mality stated by Eq. (19) (see Appendix 1), which means
that dx/d0 = 0. However, after almost 90% of the op-
erating period, the conversion starts to decrease. This is
due to operating the reactor at the constant upper tem-
perature limit, which is shown in Figures 1 and 4. In this
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Figure 3. Time course of IGI enzyme deactivation of glucose isom-

erase reactor under optimal temperature—time policy at residence time
of 0.5 h.
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Figure 4. Optimal temperature profiles of glucose isomerase reactor
under temperature—time policy at residence time of 1.0 h.

way, we could obtain a product with uniform composi-
tion that is practically desired.

As can be seen from Figures 1 and 4, the optimal
initial temperature decreases exponentially with the
operating period and increases as the reactor residence
time increases. This behavior is attributed to the same
reasons mentioned above. The shape of the residual
enzyme activity profiles depends on the shape of the
temperature profiles as shown in Figures 1 and 3 for 1 =
0.5 h and in Figures 4 and 6 for t = 1.0 h. In Figures 3
and 6 the first two residual enzyme activity profiles
which correspond to low operating periods decrease
exponentially with time since the corresponding
temperature profiles are almost constant, Figures 1 and
4, and become constant at higher dimensionless time
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Figure 5. Optimal conversion profiles of glucose isomerase reactor
under temperature—time policy at residence time of 1.0 h.
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Figure 6. Time course of IGI enzyme deactivation of glucose isom-
erase reactor under optimal temperature-time policy at residence time
of 1.0 h.

values. However, the rest of the temperature profiles in
Figures 1 and 4 are no longer constant for all dimen-
sionless times, thus resulting in a non-exponential re-
sidual enzyme activity decrease.

It is clear that within the numerical accuracy of the
two methods (NLP and disjoint policy) that the solu-
tions agree well in describing the optimal temperature
policy that maximizes the reactor productivity as shown
in Tables II and III. However, in the present work the
temperature—time profiles are simply calculated by
solving the two nonlinear ordinary differential equations
and the nonlinear algebraic equation, which results in
less computational steps and hence times. To the best of
the author’s knowledge, it appears that this method of
solution was not tried before; instead, sophisticated
nonlinear optimization techniques were used to obtain
the optimal temperature control policy in such reactors.
From numerical point of view, this method could be
easily implemented because of its simplicity when com-
pared to the control function discretization proposed by
Cuthrell and Biegler (1987) and Faqir (1998). Here, the
objective function and constraints are discretized along
the operating time period. Consequently the size of the
nonlinear program to solve will be affected by the
number and placement of the discretized node points,
which in turn will affect the numerical accuracy.

An advantage of the disjoint policy method that it
results in an explicit expression for the slopes of both the
temperature and the residual enzyme activity profiles.
This sheds some light on the characteristics of such
profiles without resorting to the numerical solutions, as
is required by the other NLP numerical methods.

To account for model uncertainty, if the optimal
temperature—time policy is applied to a real process,
then further research and experimental work are re-
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Figure 7. Variation of conversion, residual enzyme activity, and re-
action rate due to optimal temperature—time policy of glucose isom-
erase reactor.

quired. In particular, further experimental work could
make the obtained results very practical for industrial
application.

NOMENCLATURE

residual enzyme activity

-

C concentration [mol/L]

Cgo initial concentration of active enzyme [mol/L]

Cs substrate concentration [mol/L]

Cso substrate concentration at reactor inlet [mol/L]

E enzyme ]

Eq activation energy of enzyme deactivation [J/mol]
reaction

E. activation energy of equilibrium [J/mol]

E, activation energy of Michaelis—-Menten [J/mol]
constant for product

E activation energy of Michaelis—-Menten [J/mol]
constant for substrate

Ey, activation energy of maximum reaction [J/mol]

rate for product
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Ey activation energy of maximum reaction [J/mol]
rate for substrate

k pseudo first-order reaction rate [1/h]

kyk_y rate constants [L/(mol-h)]

k_1,k> rate constants [1/h]

K. equilibrium constant -]

Ky enzyme thermal deactivation rate constant [1/h]

K apparent Michaelis—-Menten constant [mol/L]

K, reciprocal of Ky, [L/mol]

K, Michaelis—Menten constant for product [mol/L]

K Michaelis—Menten constant for substrate [mol/L]

n the ratio of enzyme—substrate to free -]
enzyme

P product -]

R ideal gas constant [J/mol-K]

r reaction rate [mol/L-h]

I reaction rate with enzyme deactivation [mol/L-h]

s apparent substrate concentration defined [mol/L]
as s = Cso(xe — x)

T temperature K]

i lower temperature bound [K]

TV upper temperature bound K]

T optimum temperature K]

t time [h]

te reactor operating period [h]

Vin maximum apparent reaction rate [mol/L-h]

Ve maximum reaction rate for product [mol/L-h]

Vs maximum reaction rate for substrate [mol/L-h]

X substrate conversion -

Xe equilibrium substrate conversion [-]

x" optimal substrate conversion [

Greek Symbols

T time-averaged productivity [mol/L-h]

o substrate protection factor [

T reactor residence time [h]

o lower reactor residence time bound [h]

v upper reactor residence time bound [h]

0 dimensionless operating time

Subscripts

e equilibrium

ES enzyme-substrate complex

P product

s substrate

0 initial or pre-exponential factor

APPENDIX 1

Derivation of the Optimal Temperature
Profile Using the Disjoint Policy

The value of the productivity, = (7)), depends not only
on the set of variables x and 7 but also on an entire
function 7(0). Let T"(0) be the function that maximizes
7(T), then for any permissible function 7(0), and for any
small interval A0, we can write:

8-+A0
[ o) - x@)a = o
0

where 0; < 0 < 6, + A6, with an arbitrary 6,. Applying
the mean value theorem to the above inequality, we
obtain,

x(T*(0)) > x(7(0)) for all 6. (17)

This is called the disjoint policy (Denn, 1969). The
condition that is implied by Eq. (17) is as to maximize
the integral given by Eq. (10), choose the profile, 7(6),
that maximizes the integrand at each value of 6. Ap-
plying this policy to Eq. (10), it is sufficient to maximize
x(7(0)) in order to find the optimum productivity = (7).
Because x is an implicit function of 7, the rule of im-
plicit differentiation is used to find dx/dT at each spec-
ified 0, then:

a-(T5r) JU5T), o

For dx/dT to vanish we must have
(0/(x, T)/0T) = 0, (19)

provided that (9f(x,7)/0x)r # 0. When this is applied
to Eq. (9), one could obtain (9f(x,T)/0x); =
—[K],Cso + 1/(x. — x)]. Note that (Ifix,T)/ox)r is a
function of substrate conversion, since K, and x, are
functions of temperature only. The expression (If{x,T)/
dx)t is different from zero for the following cases: when
K, = K, it follows that K| = 0; and when K, > K, it
follows that K, > 0. The only possible case which might
make (9f(x,T)/0x)t equal to zero is when K|, < 0 which
corresponds to K, < K. Accordingly, the correspond-
ing critical value of x which makes (9f(x,T)/dx)r = 0 is
given by x = x. + /K] Cso. If it happens that (9f(x,T)/
dx)r = 0 for certain values of K] < 0, then the neces-
sary condition of optimality given by Eq. (19) will not be
satisfied, and hence an optimal solution does not exists.
Note that by the chain rule we could write dx/d0 = (dT/
dO)(dx/dT). Because Eq. (19) states the necessary con-
dition of optimality, then it follows that dx/d6 = 0 for
all T(9) < T".

The expression of (df(x,T)/dT)y is also obtained from
the expansion of Eq. (9), which results in the following
nonlinear algebraic equation:

_ OLCSOXXS% =0, (20)

where
dilT(k.a):kj—“TJraZ—];, (21)
dK 1 g1 xg3—g(Kp—1)(Ke+1) (22)

dT ~ RT? g ’

g1 = Kp + Kep + CSO(Ke + Ksp); & = KpEp + KepEep
+ Cso (KeEe + KspEsp);
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g3 = (Kyp — DKeEe + (Ke + 1)(KspEgp); Esp = Ep — E;
Eep =E.+ Ep;

Kep = Ker§ Ksp = Kp/Ks;

and
%:ﬁxfz—(l+Ke)xﬁVs(l+Ke)7 (23)
dr Vs RT?
where
J1 = Kse + Kz + CsoKspe + CooKe; 2 = Eys(1 + Ke)

+ 2K Ee;

f3 = KseEse + KseZEseQ + CsO (KeEe + KspeEspe)§

Ee = Es + Ee; Ee = Eg + 2Ee;
Espe = E +2E, — Ep§ K. = KK.;
K.K?

Kser = KSKZ; Kspe =
€ Kp

dxe_ E. xg.
dT  RT*K.’

and
a(x, T) = eKnCoox

Now, by making use of the chain rule: da/d0 = (dT/
dO)(da/dT), and by eliminating da/dT and da/d0 between
Egs. (4), (20), and (21) we can obtain the desired result:

ar K4 (1 — o) (aax.)

do TOXea dkédT + [ekr;(_u] % _ aCsolf;;dK;n ’
da
% = —lde(l — G)a,

= xe(l - Ol(X, T)e_km)a

with the initial conditions
T=Tyanda = 1 at 0 = 0 with 7" < Ty < TY.

APPENDIX 2
General Optimization Problem Formulation

For a given packed bed reactor, this optimization
problem corresponds to the case where both flow rate
and temperature would be varied with time. In this case
the conversion x is now a function of two undetermined
profiles, namely x(¢) and 1(t). Accordmgly, the reactor
productivity can be written as © = Cg fo z T(Tee D 4.
Let ¢ = + then the general Optlledtlon prob-
lem could be written as

Maximize <

= Cso / (T ))d9>
x,T,t
subject to the reactor design equation, Eq. (9), residual
enzyme activity, Eq. (4); and T" < T< TY; 0 < x < x;
and bounds on the reactor residence time t- < 1 < V.
By applying the disjoint policy concept for the above
problem, in order to maximize 7, it is sufficient to set

(06/9T), = 0, (24)

(99/07); = 0. (25)

Note that the condition given by Eq. (24) is already
derived (see Appendix 1), and the second condition
given by Eq. (25) could now be derived for the ap-
proximate case of pseudo first-order reversible reaction
which corresponds to the case when K, = K. In this
case the conversion x is given by x = x,(1 — ¢™*™).
Accordingly we could obtain the following expression:
Xe —kat

(8¢/81)T:T—2((1 + kat)e 1. (26)
As can be seen from Eq. (26), as t goes to 0 the right-
hand side goes to (—x. (ak)?*/2), and as T goes to infinity
it approaches zero. This means that the function ¢ is
monotonically decreasing function with respect to 1. So
it takes a maximum value only at the lower bound t*.
This in turn states that the optimal residence time profile
must be constant with time and be held at its lower
bound.

Although the condition given by Eq. (25) is applied to
the approximate reaction rate, it is applicable to the
exact reaction rate by applying the chain rule, as was
done in deriving the condition given by Eq. (24).
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