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Abstract The optimum design of a given number of
CSTRs in series performing reversible Michaelis-Menten
kinetics in the liquid phase assuming constant activity of
the enzyme is studied. In this study, the presence of
product in the feed stream to the ®rst reactor, as well as
the effect of the product intermediate concentrations in
the downstream reactors on the reaction rate are investi-
gated. For a given number of N CSTRs required to perform
a certain degree of substrate conversion and under steady
state operation and constant volumetric ¯ow rate, the re-
actor optimization problem is posed as a constrained
nonlinear programming problem (NLP). The reactor op-
timization is based on the minimum overall residence time
(volume) of N reactors in series. When all the reactors in
series operate isothermally, the constrained NLP is solved
as an unconstrained NLP. And an analytical expression for
the optimum overall residence time is obtained. Also, the
necessary and suf®cient conditions for the minimum
overall residence time of N CSTRs are derived analytically.
In the presence of product in the feed stream, the re-
versible Michaelis-Menten kinetics shows competitive
product inhibition. And this is, because of the increase in
the apparent rate constant K0m that results in a reduction of
the overall reaction rate. The optimum total residence time
is found to increase as the ratio (w0) of product to sub-
strate concentrations in the feed stream increases. The
isomerization of glucose to fructose, which follows a re-
versible Michaelis-Menten kinetics, is chosen as a model
for the numerical examples.

List of symbols
CE;0 [mg/l] initial concentration of active

enzyme
Cp [mole/l] product concentration
Cp;e [mole/l] product concentration

at equilibrium
Cp;0 [mole/l] product concentration at the inlet

of the ®rst reactor
Cs [mole/l] substrate concentration

Cs;e [mole/l] substrate concentration
at equilibrium

Cs;0 [mole/l] substrate concentration at the inlet
of the ®rst reactor

D [ ] determinant
HU [ ] upper triangular hessain matrix
Ke [ ] equilibrium constant
Km [mole/l] apparent Michaelis-Menten

constant
K0m [ ] dimensionless Michaelis-Menten

constant �Km=Cs;0�
Kp [mole/l] Michaelis-Menten constant for

product
Ks [mole/l] Michaelis-Menten constant for

substrate
Kÿ1;K2 [hÿ1] rate constants
K1;Kÿ2 [l/mole � h] rate constants
N [ ] number of reactors in series
Q [l/h] volumetric ¯ow rate
R�Cs� [mole/l � h] reaction rate
t [h ] time
T [�C] temperature
V [l] reactor volume
Vm [mole/l � h] maximum apparent reaction rate
V0m [h)1] apparent reaction rate de®ned as

�Vm=Cs;0�
Vp [mole/l � h] maximum reaction rate for product
Vs [mole/l � h] maximum reaction rate for sub-

strate
X [ ] substrate conversion

Greek symbols
a [ ] dimensionless substrate concentra-

tion Cs=Cs;0

a� [ ] dimensionless optimum substrate
concentration

s [h] residence time V=Q
s� [h] optimum residence time
w [ ] ratio of product to substrate con-

centrations Cp=Cs

Subscripts
e equilibrium
i refers to ith reactor
j refers to jth reactor
k order of submatrix
p product
s substrate
0 initial
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1
Introduction
The problem of reactor optimization can be divided into
two major classes, namely reactor design and reactor op-
eration. For a given reactor type of known capacity, op-
timization of reactor operation involves the determination
of optimum operating conditions required to improve
operational economics and product yield. While optimi-
zation of reactor design involves the determination of the
optimum capacity of one or more reactors in series or an
arrangement of reactors required to achieve a speci®ed
yield such that an objective function based on cost or
technological considerations is optimized. Two ideal
steady-state ¯ow reactors are known. The ®rst is the plug
¯ow reactor, while the other is called the continuous
stirred tank reactor or the CSTR. The CSTR is based on
theoretical assumptions of perfect and instantaneous
mixing in the tank, which results in perfectly homoge-
neous reactor contents. For enzyme-catalyzed reaction, the
plug ¯ow reactor is much superior than continuous stirred
tank reactor. Still the CSTR possess a number of advan-
tages for industrial operation, one major advantage of the
CSTR, apart from its simplicity of construction and lower
construction cost, is the ease of pH and temperature
control facilitated by good mixing [1].

A number of literature references are available on the
optimum design of CSTRs in series performing enzyme-
catalyzed reactions [2±8]. From the work of Luyben and
Tramper [2], who were the ®rst to derive analytical ex-
pression to ®nd the minimum overall volume of a series of
CSTRs following irreversible Michaelis-Menten kinetics, to
the work of Malcata and Cameron [7] and Abu-Reesh [8].
Malcata and Cameron [7] were the ®rst to consider the
presence of product in the feed stream when they optimized
a series of CSTRs performing reversible enzyme-catalyzed
reactions obeying Briggs-Haldane mechanism. But the ef-
fects of product intermediate concentrations on the reac-
tion rate for the downstream reactors were not investigated.
However, for the general case they were not able to derive
an analytical expression for the optimum design of CSTRs
in series. Abu-Reesh [8] has optimized a series of CSTRs
performing reversible Michaelis-Menten kinetics in the
liquid phase. An analytical expression for the optimum
overall volume is obtained. But the effects of product in the
feed and in the intermediate streams on the reaction rate
for the downstream reactors were not investigated.

As mentioned above, literature references are available
on the theoretical optimization procedures used for the
design of a series of CSTRs performing biochemical re-
actions. But, all the above references did not rigorously
analyze the necessary and suf®cient conditions required
for the existence of an optimum of an optimization
problem of a function of several variables [2±8].

The objective of this paper deals with the derivation of
an analytical expression for the optimum design of a series
of CSTRs performing a reversible enzyme-catalyzed bio-
chemical reaction obeying Michaelis-Menten kinetics in
the liquid phase. The derivation takes into consideration
the presence of product in the feed stream to the ®rst
reactor as well as the effect of the intermediate product

concentrations in the downstream reactors on the reaction
rate. For a given number of reactors, the reactor design
formulation is posed as a constrained nonlinear pro-
gramming problem (NLP). The objective function is set to
minimize the overall volume (residence time) under steady
state operation and constant volumetric ¯ow rate required
to perform a certain degree of substrate conversion. For
the case of isothermal operation when all the reactors in
series operate at constant and identical temperature, the
constrained NLP is reduced in size and solved as an un-
constrained optimization problem. Solving this reduced
NLP as unconstrained optimization problem is proved to
be optimal for the constrained case. For a given degree of
substrate conversion and a number of CSTR reactors in
series operating isothermally, a rigorous mathematical
analysis is also developed aimed at establishing the nec-
essary and suf®cient conditions required for the existence
of a minimum overall reactor volume (residence time).

2
Kinetic model
In general, all reactions catalyzed by enzymes are revers-
ible [7]. A realistic sequence involves the formation of a
hybrid substrate and enzyme complex, SE, according to
the following reaction mechanism [9, 10]:

S� E ,kÿ1

k1

SE ,kÿ2

k2

P� E ; �1�

where E, S, and P denote the active free enzyme, substrate,
and product. Under the assumption of Cs � CE;0, the net
rate of the enzymatic conversion of S to P can be expressed
as [9, 10]:

R�Cs� � ÿ dCs

dt
� dCp

dt
�

Vs

Ks

� �
Cs ÿ Vp

Kp

� �
Cp

1� Cs

Ks

� �
� Cp

Kp

� � : �2�

From the reaction stoichiometry and the presence of
product in the feed, the following expression relating the
concentrations of substrate and product can be
obtained:

Cs;0 � Cp;0 � Cs � Cp � Cs;e � Cp;e � Cs;e�1� Ke� ;
�3�

where:

Cs � Cs;0�1ÿ X�;Cp � Cp;0 � Cs;0X � Cs;0�w0 � X� ;
�4�

X � Cs;0 ÿ Cs

Cs;0
; �5�

Cs;e � Cs;0�1� w0�
1� Ke

; �6�

w0 �
Cp;0

Cs;0
; �7�

and w0 denotes the ratio of initial product concentration to
initial substrate concentration [11].

The rate expression given by Eq. (2) can be reduced to
reversible Michaelis-Menten kinetics as:
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R�Cs� � Vm�Cs ÿ Cs;e�
Km � �Cs ÿ Cs;e� ; �8�

where:

Vm � VsKp

Kp ÿ Ks

� �
1� 1

Ke

� �
; �9�

Km � KpKs

Kp ÿ Ks

� �
1� Ke

Kp
� 1

Ks

� �
Cs;0�1� w0�

1� Ke

� �� �
;

�10�
and

Vs � CE;0K2; Vp � CE;0Kÿ1; Ks � Kÿ1 ÿ K2

K1
;

Kp � Kÿ1 ÿ K2

Kÿ2
;

Ke � VsKp

VpKs
� Cp;e

Cs;e
; �11�

where Vm, and Km are apparent rate constants, that are
functions of Cs;0;w0 and temperature and both can have
negative values.

3
Optimization of a series of N CSTRs
Consider a series of completely mixed N CSTRs in which a
reversible reaction is carried out obeying Michaelis-Men-
ten kinetics. The enzyme concentration is assumed to be
identical and remain constant at all times in all reactors i.e.
constant activity of the enzyme. The substrate material
balance on reactor i under steady state condition and
constant volumetric ¯ow rate can be written as:

si � Vi

Q
� �Cs;iÿ1 ÿ Cs;i�

R�Cs;i� i � 1; 2; . . . ;N ; �12�

where Vi is the volume of reactor i, Q is the volumetric
¯ow rate, Cs;iÿ1 is the inlet substrate concentration to re-
actor i, Cs;i is the substrate concentration in reactor i, and
si is the residence time in reactor i. Using Eq. (8) for the
reaction rate, the residence time in reactor i can be written
as:

si � �Cs;iÿ1 ÿ Cs;i��Km;i � Cs;i ÿ Cs;e;i�
Vm;i�Cs;i ÿ Cs;e;i�

i � 1; 2; . . . ;N ; �13�
where:

Vm;i � VsKp

Kp ÿ Ks

� �
i

1� 1

Ke;i

� �
; �14�

Km;i � KpKs

Kp ÿ Ks

� �
i

1� Ke

Kp
� 1

Ks

� �
i

"

� Cs;iÿ1�1� wiÿ1�
1� Ke;i

� ��
; �15�

Cs;e;i � Cs;iÿ1�1� wiÿ1�
1� Ke;i

; �16�

wiÿ1 �
Cp;iÿ1

Cs;iÿ1
: �17�

For constant volumetric ¯ow rate, the objective function is
set to minimize the overall reactor volume, which is
equivalent to minimizing the total residence time of all the
N CSTRs in series. For a given Cs;0;Cs;N and w0, the op-
timization problem can be posed as a constrained non-
linear programming problem (NLP) as follows:

Minimize s �
XN

i�1

si : �18�

subject to:

si � �Cs;iÿ1ÿ Cs;i��Km;i� Cs;i ÿ Cs;e;i�
Vm;i�Cs;i ÿ Cs;e;i� i � 1; 2; . . . ;N ;

Vm;i � VsKp

Kp ÿ Ks

� �
i

1� 1

Ke;i

� �
i � 1; 2; . . . ;N ;

Km;i � KpKs

Kp ÿ Ks

� �
i

1� Ke

Kp
� 1

Ks

� �
i

Cs;iÿ1�1� wiÿ1�
1� Ke;i

� �" #
i � 1; 2; . . . ;N ;

wiÿ1 �
Cp;iÿ1

Cs;iÿ1
i � 2; . . . ;N ;

Cs;i � Cs;iÿ1 i � 1; 2; . . . ;N ;

Cs;N � Cs;i � Cs;0 i � 1; 2; . . . ;N ÿ 1 :

Note that, if the feed to the ®rst reactor is free of product,
then w0 � 0: But for any reversible reactions to occur in
the downstream reactors, the ratio of product to substrate
concentrations is different from zero i.e. wi 6� 0, i � 1;
2; . . . ;N ÿ 1. Thus the progress of the reversible reaction
could be in¯uenced by this ratio. The apparent rate con-
stant Vm;i is a function of temperature only as it can be
seen from Eq. (9), since the kinetic parameters are func-
tions only of temperature. Whereas the apparent rate
constant Km;i is a function of temperature as well as wiÿ1
which in turn is a function of Cs;iÿ1 and Cp;iÿ1. An overall
material balance on reactor i yields:

Cs;iÿ1 � Cp;iÿ1 � Cs;i � Cp;i � Cs;e;i � Cp;e;i

i � 1; 2; . . . ;N : �19�
Using the de®nition of w, Eq. (19) can be written as:

Cs;iÿ1�1� wiÿ1� � Cs;i�1� wi� � Cs;e;i�1� Ke;i�
i � 1; 2; . . . ;N : �20�

Applying Eq. (20) recursively for i equal 1 up to N we
obtain:

Cs;0�1� w0� � Cs;1�1� w1� � . . . � Cs;N�1� wN�
� Cs;e;i�1� Ke;i� : �21�

From the above relation it can be concluded that Km;i does
not depend on the intermediate concentrations Cs;iÿ1 and
Cp;iÿ1. It is only dependent on w0 and temperature. So, we
can write:
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Km;i � Km � f�T;w0� i � 1; 2; . . . ;N ; �22�
Vm;i � Vm � f�T� i � 1; 2; . . . ;N : �23�
The same thing could be said about Cs;e;i which follows
from Eq. (21):

Cs;e;i � Cs;0�1� w0�
1� Ke;i

i � 1; 2; . . . ;N : �24�

It follows that:

Cs;e;i � f�T;w0� i � 1; 2; . . . ;N : �25�
So, under isothermal operation when all the reactors in
series operate at constant and identical temperature, we
can write:

Cs;e;i � Cs;e � f�w0� i � 1; 2; . . . ;N : �26�
Thus, for a given Cs;0; Cs;N ; w0; and under isothermal
operation in all reactors, the optimization problem given
by Eq. (18) can be reduced in size to:

Minimize
ai

1�i�Nÿ1

s �
XN

i�1

si ; �27�

subject to:

si � �aiÿ1 ÿ ai��K0m � ai ÿ ae�
V0m�ai ÿ ae� i � 1; 2; . . . ;N ;

ai � aiÿ1 i � 1; 2; . . . ;N ;

aN � ai � 1 i � 1; 2; . . . ;N ÿ 1 ;

where ai; ae and K0m are dimensionless variables de®ned as:

ai � Cs;i

Cs;0
; K0m �

Km

Cs;0
; ae � Cs;e

Cs;0
;

and

V0m �
Vm

Cs;0
:

Note that, the minimum of an unconstrained objective
function is the minimum of the same objective function
subjected to a set of constraints only if it is feasible i.e. the
unconstrained minimum satis®es the set of constraints of
the NLP. The above reduced NLP can be solved as an
unconstrained optimization problem. And the conditions
for minimum overall residence time can be derived using
the following theorem. The theorem states the necessary
and suf®cient conditions required for the existence of a
minimum of an unconstrained objective function of sev-
eral variables [12]:

Theorem 1
Necessary condition:
For the vector of normalized intermediate concentra-
tions, a�; to be a local minimum, it is necessary that the
gradient of the objective function s�a� at a� vanishes i.e.:

rs�a�� � 0 :

Suf®cient conditions:
Ifrs�a�� � 0 andr2s�a�� is positive de®nite, then a� is an
isolated local minimum of s�a�:
Where a is a vector of intermediate substrate concentra-
tions of dimension (N ÿ 1� 1), the gradient rs�a� is a

vector of dimension (N ÿ 1� 1), and the hessian r2s�a� is
a symmetric matrix of second derivatives of dimension
(N ÿ 1� N ÿ 1), and all are de®ned as:

aT � �a1 a2 � � � aNÿ1� ;

rsT�a� � os
oa1

os
oa2

: :
os

oaNÿ1

� �
; and

r2s�a� �

o2s
oa2

1

o2s
oa2oa1

: : o2s
oaNÿ1oa1

o2s
oa1oa2

o2s
oa2

2
: : o2s

oaNÿ1oa2

: : : : :
: : :

o2s
oa1oaNÿ1

o2s
oa2oaNÿ1

: : o2s
oa2

Nÿ1

2666664

3777775 ; �28�

where:

os
oai
� K0m

V0m

1

�ai�1 ÿ ae� ÿ
�aiÿ1 ÿ ae�
�ai ÿ ae�2

" #
i � 1; 2; . . . ;N ÿ 1 ; �29�

and the hessian matrix is tridiagonal with its elements
de®ned as:

o2s
oaioaj

�

2K0m�aiÿ1 ÿ ae�
V0m�ai ÿ ae�3

if i � j

ÿK0m
V0m�ai�1 ÿ ae�2

if iÿ j � 1

ÿK0m
V0m�ai�1 ÿ ae�2

if iÿ j � ÿ1

0:0 if jiÿ jj > 1

8>>>>>>>>>>>><>>>>>>>>>>>>:
i; j � 1; 2; . . . ;N ÿ 1 : �30�

For example, if we have 4 CSTRs is series, Eqs. (28) and
(30) yield:

r2s�a�

�

2K0m�a0 ÿ ae�
V0m�a1 ÿ ae�3

ÿK0m
V0m�a2 ÿ ae�2

0:0

ÿK0m
V0m�a2 ÿ ae�2

2K0m�a1 ÿ ae�
V0m�a2 ÿ ae�3

ÿK0m
V0m�a3 ÿ ae�2

0:0
ÿK0m

V0m�a3 ÿ ae�2
2K0m�a2 ÿ ae�
V0m�a3 ÿ ae�3

26666666664

37777777775
:

for a� to be a local minimum then according to theorem 1,
we must have os=oai � 0 for i � 1; 2; . . . ;N ÿ 1; thus Eq.
(29) is reduced to:

�a�iÿ1 ÿ ae��a�i�1 ÿ ae� � �a�i ÿ ae�2
i � 1; 2; . . . ;N ÿ 1 : �31�

This equation can be written recursively as [8]:

a�i ÿ ae

a0 ÿ ae

� �
� aN ÿ ae

a0 ÿ ae

� �i=N

i � 1; 2; . . . ;N ÿ 1 : �32�

The optimum residence time si in reactor i is obtained by
combining Eqs. (27) and (32) [8]:
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s�i �
1

V0m

aN ÿ ae

a0 ÿ ae

� �1=N

ÿ1

" #

� K0m � �a0 ÿ ae� aN ÿ ae

a0 ÿ ae

� �i=N
" #

; �33�

and the overall residence time can be written as:

s� �
XN

i�1

s�i

� 1

V0m
NK0m

a0 ÿ ae

aN ÿ ae

� �1=N

ÿ1

" #
� �a0 ÿ aN�

( )
: �34�

Since the condition expressed by Eq. (34) holds for a
minimum as well as for a maximum or a saddle point, then
the hessian matrix at the stationary point a� must be
checked. If the hessian matrix r2s�a�� is positive de®nite,
then a� corresponds to a local minimum for the uncon-
strained case. And if the intermediate concentration con-
straints are satis®ed, then it is optimal for the above
reduced nonlinear programming problem. The following
theorem [12, 13] can be used to establish the positive
de®niteness of the hessian matrix at the given vector a�:

Theorem 2:
Either of the following tests is a necessary and suf®cient
condition for the real symmetric matrix r2s�a�� to be
positive de®nite:

i All the submatrices of r2s�a�� must have positive
determinants (>0),

ii All the eigenvalues of r2s�a�� must be positive (>0).

The elements of the hessian matrix r2s�a�� can be
written as follows using Eqs. (30) and (32):

r2s�a�� � H�i;j

�

2
K0m
V0m

1

�a0 ÿ ae�2
a0 ÿ ae

aN ÿ ae

� �2i�1
N

if i � j,

ÿK0m
V0m

1

�a0 ÿ ae�2
a0 ÿ ae

aN ÿ ae

� �2i�2
N

if iÿ j � 1,

ÿK0m
V0m

1

�a0 ÿ ae�2
a0 ÿ ae

aN ÿ ae

� �2i�2
N

if iÿ j � ÿ1,

0:0 if jiÿ jj > 1 :

8>>>>>>>>>>>><>>>>>>>>>>>>:
�35�

The hessian matrix given by Eq. (35) is a real, symmetric
and tridiagonal matrix. This matrix can be factorized into
lower and upper triangular matrices using Gaussian
elimination method without row interchanges [13, 14].
The resulting upper triangular matrix has the following
structure:

HU�i;j �

i� 1

i

� �
K0m
V0m

1

�a0 ÿ ae�2
a0 ÿ ae

aN ÿ ae

� �2i�1
N

if i � j;

0:0 if iÿ j � 1;

ÿK0m
V0m

1

�a0 ÿ ae�2
a0 ÿ ae

aN ÿ ae

� �2i�2
N

if iÿ j � ÿ1;

0:0 if jiÿ jj > 0 ,

8>>>>>>>><>>>>>>>>:
�36�

Since the determinant of an upper triangular matrix is the
product of its diagonal elements [13, 14], then the deter-
minant of any submatrix HU�k of order k, if no row in-
terchanges has been made, is given by:

Dk � �k� 1� K0m
V0m

1

�a0 ÿ ae�2
 !k

a0 ÿ ae

aN ÿ ae

� �Pk

i�1

2i�1
N� �

k � 1; 2; . . . ;N ÿ 1 : �37�
The ratio a0 ÿ ae=aN ÿ ae is always greater than zero,
because in practice ai > ae for i = 1,2,. . .,N. So, the sign of
Dk is determined by the sign of the ratio K0m=V0m; which
depends on the type of reaction and temperature. Using
Eqs. (14) and (15) we can write:

K0m
V0m
� Ks

Vs

1� Ke

Kp
� 1

Ks

� �
Cs;0�1�w0�

1�Ke

� �
1� 1

Ke

24 35 : �38�

From this relation it is obvious that K0m=V0m is always
greater than zero and hence Dk is always greater than zero.
This completes the proof that satis®es condition (i) of
theorem 2, that is; the hessian matrix is positive de®nite at
a�. So, we can conclude that s� is a local minimum of the
objective function given by Eq. (27).

4
Numerical examples
One of the famous reversible reactions following Mi-
chaelis-Menten kinetics is that of the enzymatic isomeri-
zation of glucose to fructose. This reaction occurs in the
manufacturing of high fructose corn syrup (HFCS), and
approaches equilibrium at relatively low conversions.

Table 1. Kinetic parameters
for glucose isomerization re-
action at three different con-
ditions assuming initial
glucose concentration of 2.8
mole/l [8, 15 ]

Ks = 1.5Kp Ks = Kp Kp = 1.5Ks

T (°C) 61 70 80
Ks (mole/l) 0.72 0.84 1.011
Kp (mole/l) 0.48 0.84 1.540
Km (mole/l) )8.3 )380.2 9.466
Vm (mole/(l á h)) )23.0 )1934.36 90.88
Ke ( ) 0.96 1.144 1.349
ae ( ) 0.5 0.4664 0.4256
K 0m ( ) )3.0 )135.78 3.38
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Glucose is usually produced by the enzymatic liquefaction
and sacchari®cation of starch at about 60 �C at a typical
concentration of 2.8 mole/l [8, 15]. The kinetic parameters
of this reaction are shown in Table 1 at different temper-
atures that are of practical interest [15]. The intermediate
substrate concentration given by �ai ÿ ae�=�a0 ÿ ae� is
calculated for substrate conversion of 90% of the equilib-
rium for a series of N CSTRs [8]. The results shown in
Table 2 are for the case of 5 CSTRs in series.

The effect of the presence of product in the feed stream
to the ®rst reactor on the optimum total residence time is
studied at three different temperatures and different
number of reactors in series. The results are shown in Figs.
1, 2, and 3. The elements of the hessian matrix are eval-
uated in the case of N equal 5 and the conditions for a local
minimum are checked. Their corresponding results are
shown in Tables 3 and 4 respectively.

5
Discussion and conclusions
The analytical expression obtained for the minimum
overall residence time of N CSTRs in series operating
isothermally and performing reversible Michaelis-Menten
kinetics showed that it is a function of several parameters.
Such parameters are: the initial and the desired ®nal
concentrations of substrate, equilibrium concentration,
number of reactors, the apparent kinetic parameters K0m
and V0m, and the initial ratio of concentrations of substrate
and product w0. Also, it is shown that the analytical ex-
pression for the optimum intermediate substrate concen-
tration is independent of the apparent kinetic parameters
K0m and V0m, and the initial ratio of product to substrate
concentrations w0.

The necessary condition of a stationary point stated by
condition (i) of theorem 1 leads to an analytical expression

for the overall residence time. This expression given by
Eq. (34) corresponds to a local minimum. Since its cor-
responding hessian matrix is real, symmetric, tridiagonal
and positive de®nite. This is proved by Eq. (37), where the
determinant of any submatrix HUk of order k is positive at
the optimum intermediate substrate concentration vector
a�. This unconstrained minimum is also optimum for the
constrained NLP, since its intermediate substrate con-
centration constraints are satis®ed as it can be seen from
Table 2. This is proved to be valid at the practical tem-
perature range of T equal 61 up to 80 �C. For the case of N
equal 5 using three different operating temperatures it is
shown that all the eigenvalues of the corresponding hess-
ain matrices are positive as shown in Tables 3 and 4, which
satis®es also condition (ii) of theorem 2.

Table 2. Optimum intermediate dimensionless concentrations a�i
evaluated at different temperatures and relative conversion of
90% with S0 = 2.8 mole/l, w0 = 1 and N = 5

T = 61 °C T = 70 °C T = 80 °C

0.817 0.803 0.788
0.702 0.678 0.654
0.629 0.600 0.569
0.583 0.550 0.516
0.554 0.519 0.483

Fig. 1. The optimum total residence time as function of
w0 � Cp;0=Cs;0 for N CSTRs in series performing reversible
Michaelis-Menten kinetics at T = 61 �C

Table 3. The hessian matrix
given by equation 30 evaluated
at different temperatures and
relative conversion of 90%
with S0 = 2.8 mole/l, w0 = 1
and N = 5

T = 61 °C T = 70 °C

21.76 )17.24 0 0 9.60 )7.60 0 0
)17.24 54.66 )43.31 0 )7.60 24.10 )19.10 0

0 )43.31 137.30 )108.80 0 )19.10 60.54 )47.98
0 0 )108.80 344.87 0 0 )47.98 152.10

T = 80 °C

4.20 )3.33 0 0
)3.33 10.55 )8.36 0

0 )8.36 26.49 )20.99
0 0 )20.99 66.54

Table 4. The eigenvalues of the hessian matrices given in Table 3

T = 61 °C T = 70 °C T = 80 °C

9.69 4.27 1.87
39.55 17.44 7.63

117.02 51.6 22.58
392.32 172.99 75.70
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The effect of the presence of product in the feed stream
to the ®rst reactor is investigated. It is found that the only
kinetic parameter depending on w is K0m where it is de-
pendent on w0 only. The effect of w0 on the optimum
overall residence time is shown in Figs. 1, 2, and 3 at

different operating temperatures. It is found that as the
product concentration in the feed stream increases, the
optimum total residence time increases. This behavior is
expected since the reaction exhibits competitive product
inhibition with net increase of K0m which results in a re-
duction of the reaction rate. The effect of the presence of
product in the feed stream to the ®rst reactor decreases as
the total number of reactors N increases as shown in Figs.
1, 2, and 3. This means that plug ¯ow reactors are not
greatly affected by the presence of product in the feed
stream, since in the limit as N !1 the CSTRs approach
the performance of the plug ¯ow reactor.
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