
1

C
ha

pt
er

 4
Linearization of Nonlinear Models
• So far, we have emphasized linear models which can be   

transformed into TF models.

• But most physical processes and physical models are nonlinear.

- But over a small range of operating conditions, the behavior 
may be approximately linear.

- Conclude: Linear approximations can be useful, especially 
for purpose of analysis.

• Approximate linear models can be obtained analytically by a 
method called “linearization”. It is based on a Taylor Series 
Expansion of a nonlinear function about a specified operating 
point.
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• Consider a nonlinear, dynamic model relating two process 

variables, u and y:

( ), (4-60)dy f y u
dt

=

Perform a Taylor Series Expansion about           and           and
truncate after the first order terms,

u u= y y=

( ) ( ), , (4-61)
y y

f ff u y f u y u y
u y
∂ ∂′ ′= + +
∂ ∂

where                 and                . Note that the partial derivative 
terms are actually constants because they have been evaluated at
the nominal operating point,

Substitute (4-61) into (4-60) gives:

u u u′ = − y y y′ = −

( ), .u y
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( ),
y y

dy f ff u y u y
dt u y

∂ ∂′ ′= + +
∂ ∂

The steady-state version of (4-60) is:

( )0 ,f u y=

Substitute above and recall that ,dy dy
dt dt

′
=

(4-62)
y y

dy f fu y
dt u y
′ ∂ ∂′ ′= +

∂ ∂
Linearized 
model
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q0: control, 
qi: disturbance

0i qq
dt
dhA −=

Use L.T. 0( ) ( ) ( )iAsH s q s q s= − (deviations)
1

o
V

q h
R

=

h
R
1q

dt
dhA

V
i −= linear ODE : eq. (4-74)

More realistically, if q0 is manipulated by a flow 
control valve,

hCq v=0

nonlinear element
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Example: Liquid Storage System

Mass balance:

Valve relation:

A = area, Cv = constant

(1)i
dhA q q
dt

= −

(2)vq C h=
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Combine (1) and (2),

(3)i v
dhA q C h
dt

= −

Linearize         term,

( )1 (4)
2

h h h h
h

≈ − −

Or

1 (5)h h h
R

′≈ −

where:
2R h

h h h′ −
�

�
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Substitute linearized expression (5) into (3):

1 (6)i v
dhA q C h h
dt R

⎛ ⎞′= − −⎜ ⎟
⎝ ⎠

The steady-state version of (3) is:

0 (7)i vq C h= −

Subtract (7) from (6) and let                  , noting that    
gives the linearized model:

i i iq q q′ −� dh dh
dt dt

′
=

1 (8)i
dhA q h
dt R
′

′ ′= −
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Summary:

In order to linearize a nonlinear, dynamic model:

1. Perform a Taylor Series Expansion of each nonlinear term 
and truncate after the first-order terms.

2. Subtract the steady-state version of the equation.

3. Introduce deviation variables.
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Solve Example 4.5, 4.6, 4.7
and

Solve Example 4.8

if you have any question
ask me !
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State-Space Models

• Dynamic models derived from physical principles typically 
consist of one or more ordinary differential equations (ODEs). 

• In this section, we consider a general class of ODE models 
referred to as state-space models.

• Consider standard form for a linear state-space model,

(4-90)

(4-91)

&x = Ax + Bu + Ed

y = Cx
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where: 

x = the state vector

u = the control vector of manipulated variables (also called  
control variables) 

d = the disturbance vector 

y = the output vector of measured variables. (We use 
boldface symbols to denote vector and matrices, and 
plain text to represent scalars.) 

• The elements of x are referred to as state variables. WHY?

• The elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d, and y are 
functions of time. 

• The time derivative of x is denoted by 

• Matrices A, B, C, and E are constant matrices.

( )d / d .t=x x&
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Example 4.9
Show that the linearized CSTR model of Example 4.8 can
be written in the state-space form of Eqs. 4-90 and 4-91.
Derive state-space models for two cases:

(a) Both cA and T are measured.

(b) Only T is measured.

Solution

The linearized CSTR model in Eqs. 4-84 and 4-85 can be written 
in vector-matrix form:

11 12

21 22 2

0
(4-92)

A A

s

dc a a c
dt T

dT
a a T b

dt

′⎡ ⎤ ′⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ′= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎢ ⎥ ′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
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Let             and           , and denote their time derivatives by       
and     . Suppose that the steam temperature Ts can be 
manipulated. For this situation, there is a scalar control variable,      

, and no modeled disturbance. Substituting these 
definitions into (4-92) gives,

1 Ax c′� 2x T ′� 1x&
2x&

su T ′�

{

1 11 12 1

2 21 22 2 2

0
(4-93)

x a a x
u

x a a x b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

&
14243

BA

which is in the form of Eq. 4-90 with x = col [x1, x2]. (The symbol 
“col” denotes a column vector.)
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a) If both T and cA are measured, then y = x, and C = I in              

Eq. 4-91, where I denotes the 2x2 identity matrix. A and B are 
defined in (4-93).

y T ′=
b) When only T is measured, output vector y is a scalar,         

and C is a row vector, C = [0,1].

Note that the state-space model for Example 4.9 has d = 0
because disturbance variables were not included in (4-92). 

By contrast, suppose that the feed composition and feed 
temperature are considered to be disturbance variables in the 
original nonlinear CSTR model in Eqs. 2-60 and 2-64. 

Then the linearized model would include two additional deviation
variables,         and     Aic′iT ′
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Stability of State-Space Models

• The model will exhibit a bounded response x(t) for all 
bounded u(t) and d(t) if and only if the eigenvalues of 
A have negative real roots

• Solve example 4.10

Relationship between SS and TF

• Gp (s) = C [sI-A]-1 B

• Gd (s) = C [sI-A]-1 E

• Solve example 4.11
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