L_inearization of Nonlinear Models

 So far, we have emphasized linear models which can be
transformed into TF models.

« But most physical processes and physical models are nonlinear.

- But over a small range of operating conditions, the behavior
may be approximately linear.

- Conclude: Linear approximations can be useful, especially
for purpose of analysis.
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« Approximate linear models can be obtained analytically by a
method called “linearization”. It is based on a Taylor Series
Expansion of a nonlinear function about a specified operating
point.
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o Consider a nonlinear, dynamic model relating two process

variables, u andy:

dy
f '
= f(yu)

(4-60)

Perform a Taylor Series Expansion about u=Uand y =y and

truncate after the first order terms,

__\ of
f(u,y):f(u,y)+a—u_
y

of
u'+—

oy

oy (4-6])

y

where u"=u -0 and y’ = y —y. Note that the partial derivative
terms are actually constants because they have been evaluated at

the nominal operating point, (T,y).
Substitute (4-61) into (4-60) gives:
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The steady-state version of (4-60) is:

0=f(T,y)
Substitute above and recall that dy — dy’,
dt dt
dy — of u’-|-q y' (4-62)
dt ou Y y
Linearized

model




E—" do: control,

o q;: disturbance
Tn 0 dh
; 1 A—=0;—(q,
dt
A (pump)

Use L.T. AsH(s)=0;(S)—0,(S) (deviations)

1
_ = h
qO RV
dh 1 .
AE:C{i —R—h inear ODE : eq. (4-74)
V

More realistically, if q, Is manipulated by a flow

control valve,
qo _ CV'\/H qo V‘

nonlinear element
level h




Example: Liquid Storage System
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Mass balance: A% =0, —-q (1)
Valve relation: Q= Cvx/ﬁ (2)

A = area, C, = constant




Combine (1) and (2),

dh
A= =G -Cy Jh 3)
Linearize v term,
Jheh———(h-h 4
f( h) (4)
Or
JﬁzJﬁ—%h’ (5)
where:
R 2vh

h'Oh-h




Substitute linearized expression (5) into (3):

dh = 1,
-E=m—qﬁﬁ¥ﬁh] 6)

The steady-state version of (3) Is:

0=G;-C,\h (7)
o dh dn’
Subtract (7) from (6) and let g; [ g; —j, noting that = —
gives the linearized model: dt dt
A gL Q

gt = R




Summary:

In order to linearize a nonlinear, dynamic model:

1. Perform a Taylor Series Expansion of each nonlinear term
and truncate after the first-order terms.

2. Subtract the steady-state version of the equation.

3. Introduce deviation variables.




Dynamic process model:
Differential equations

1. Obtain steady-state model
by setting derivatives to zero.

2a. If linear, subtract steady- 2b. If nonlinear, use Taylor
state equations and substitute series expansion to linearize
deviation variables. nonlinear terms.

3. Express model in deviation
variable form.

4. Take Laplace transform
(initial conditions are zero).

Repeat for other outputs

5. Algebraically eliminate all
outputs except the desired output.

Repeat for other inputs

6. Set all inputs to zero except
the desired input.

7. Find desired transfer function
by dividing remaining output
by remaining input.

Result
Figure 4.5 Procedure for developing transfer function models.




Solve Example 4.5, 4.6, 4.7
and

Solve Example 4.8

If you have any question
ask me !
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State-Space Models

Dynamic models derived from physical principles typically
consist of one or more ordinary differential equations (ODES).
In this section, we consider a general class of ODE models

referred to as state-space models.

Consider standard form for a linear state-space model,

X=Ax+ Bu+ Ed (4-90)

y = CX (4-91)

11



q—
-
D
o
Q.
©
e
O

where:

the state vector

X
[

u = the control vector of manipulated variables (also called
control variables)

d = the disturbance vector

y = the output vector of measured variables. (We use
boldface symbols to denote vector and matrices, and
plain text to represent scalars.)

 The elements of x are referred to as state variables. WHY?

* The elements of y are typically a subset of x, namely, the state
variables that are measured. In general, X, u, d, and y are
functions of time.

» The time derivative of x is denoted by x(=dx/dt).

 Matrices A, B, C, and E are constant matrices.
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Example 4.9

Show that the linearized CSTR model of Example 4.8 can
be written in the state-space form of Egs. 4-90 and 4-91.
Derive state-space models for two cases:

(a) Bothc, and T are measured.

(b) Only T Is measured.

Solution

The linearized CSTR model in Egs. 4-84 and 4-85 can be written
In vector-matrix form:

dgA En a, [[ca] [0
th, - o T (4-92)
Tt | Ay ay [[T'] | b
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Let x, [J ciyand x, [J T, and denote their time derivatives by %
and x,. Suppose that the steam temperature T, can be
manipulated. For this situation, there is a scalar control variable,
ull T¢ , and no modeled disturbance. Substituting these

definitions into (4-92) gives,

5 el o G T
Xp | |81 @8 || X EL

o J

v

A B

which is in the form of Eq. 4-90 with x = col [xy, X,]. (The symbol
“col’” denotes a column vector.)
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a) If both T and c, are measured, theny =x,and C =l in
Eqg. 4-91, where | denotes the 2x2 identity matrix. A and B are
defined in (4-93).

b) When only T is measured, output vector y is a scalar,
y =T'and C is a row vector, C = [0,1].

Note that the state-space model for Example 4.9 hasd =0
because disturbance variables were not included in (4-92).

By contrast, suppose that the feed composition and feed
temperature are considered to be disturbance variables in the
original nonlinear CSTR model in Eqgs. 2-60 and 2-64.

Then the linearized model would include two additional deviation
variables, Ti and Caj
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Stability of State-Space Models

 The model will exhibit a bounded response x(t) for all
bounded u(t) and d(t) if and only if the eigenvalues of
A have negative real roots

e Solve example 4.10

Relationship between SS and TF

+ G,(s)=C[sI-A]'B
e G,(s) = C [sI-A]LE

e Solve example 4.11
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