RESIDUE CURVE MAP CALCULATION OF A TERNARY MIXTURE

Housam Binous*, Aïda Wakad and Saïda Ben Achour
National Institute of Applied Sciences and Technology
BP 676 Centre Urbain Nord, 1080 Tunis, Tunisia
*corresponding author: binoushousam@yahoo.com

Abstract

In the present paper, the residue curve map (RMC) for the ternary system chloroform - methanol - acetone is computed with the help of Mathematica® using two methods. The first method uses the built-in function of Mathematica®, FindRoot, to get the vapor mole fractions, and Euler's method to integrate the governing differential equations. The second method solves the differential algebraic equations (DAEs) using the built-in function of Mathematica®, NDSolve. In addition, we show how one can find all binary and ternary azeotropes of this mixture using FindRoot. These pedagogic problems are currently being used to describe simple methods to solve DAEs in the applied math course taught at the Chemical Engineering Department of the National Institute of Applied Sciences and Technology in Tunis. They serve also to introduce students to the conceptual design of distillation columns in the process design course.

Keywords: Residue curve map, Differential algebraic equation, Wilson model, ternary systems, azeotropes

Introduction

Residue curve maps are very useful for the understanding of the behavior of ternary mixtures and the design of distillation systems. In addition, computing residue curve maps allows one to find azeotropes as stable nodes, unstable nodes or saddle points.

The governing equation[1] that links the liquid mole fraction in the boiler \(x_i \) to the corresponding vapor mole fraction \(y_i \) can be derived from the Rayleigh equation, and has the following final form:

\[
\frac{dx_i}{d\xi} = x_i - y_i
\]

where \(\xi \) is a warped time variable. From equation (1), it appears that pure components and azeotropes are extreme points in the residue curve map since they satisfy the following equation:

\[
x_i = y_i
\]

If we assume that the deviation from ideal behavior is only in the liquid phase (low total pressure), we can relate the liquid and vapor mole fractions using the modified Raoult's law,

\[
P_y i = x_i P_i^{sat} \gamma_i
\]

where \(\gamma_i \), the activity coefficient obtained using Wilson's model[2] for multi-component mixtures,

\[
\ln \gamma_k = -\ln \left(\sum_{j=1}^{m} x_j A_{kj} \right) + 1 - \sum_{i=1}^{m} \frac{x_i A_{ik}}{\sum_{j=1}^{m} x_j A_{ij}}.
\]

In equation (4), \(A_{ij} \) is the binary interaction parameter which depends on the molar volumes \((v_i and v_j) \) and the energy terms \(\lambda_{ii} \) and \(\lambda_{ij} \),

\[
A_{ij} \equiv \frac{v_i}{v_j} \exp \left(-\frac{\lambda_{ij} - \lambda_{ii}}{RT} \right).
\]
The vapor pressure P_{sat}^i is obtained using Antoine's equation,

$$\ln P_{sat}^i = A_i - \frac{B_i}{C_i + T}.$$

For the ternary system acetone (1) - chloroform (2) - methanol (3), Antoine's constants are given in Table (1).

Values of molar volumes\(^3\) (expressed in cm\(^3\)/mol) and energy parameters\(^3\) (expressed in kcal/kmol) are:

$$\lambda_{12} = 116.1171; \quad \lambda_{21} = -506.8519;$$
$$\lambda_{13} = -114.4047; \quad \lambda_{31} = 545.2942;$$
$$\lambda_{23} = -361.7944; \quad V = 74.05; \quad V_2 = 80.67; \quad V_3 = 40.73.$$

Computing the azeotropes of the ternary system

The FindRoot command is used to solve the system of nonlinear algebraic equations that defines the azeotropes. To get all three binary azeotropes as well as the ternary azeotrope, the initial guess of the FindRoot function must be changed by the user.

```mathematica
FindRoot[{Y1 == X1, Y2 == X2, P == X1*PS1*GAM1 + X2*PS2*GAM2 + X3*PS3*GAM3}, {X1, 0.3}, {X2, 0.4}, {T, 40}]
```

The composition and boiling temperature of the different azeotropes is given in Table (2). Total pressure was taken equal to 760 mmHg. Az\(_1\) is the ternary azeotrope and all other are binary azeotropes.

RCMs using FindRoot and Euler's method

The following *Mathematica*\(^\circ\) command computes the residue curve from an initial starting point using a while loop where FindRoot and Euler's method are invoked:

```mathematica
While[i < 200, T = FindRoot[P == Evaluate[x1[i]*PS1[i]*GAM1[i] + x2[i]*PS2[i]*GAM2[i] + x3[i]*PS3[i]*GAM3[i]], {T, 100}],
   y1[i] = x1[i]*PS1[i]*GAM1[i]/P, y2[i] = x2[i]*PS2[i]*GAM2[i]/P,
   y3[i] = x3[i]*PS3[i]*GAM3[i]/P;
   x1[i+1] = x1[i] - h(x1[i] - y1[i]),
   x2[i+1] = x2[i] - h(x2[i] - y2[i]),
   x3[i+1] = x3[i] - h(x3[i] - y3[i]), i++];
```

FindRoot allows one to compute the bubble point using the liquid mole fractions, the vapor mole fractions are then calculated using modified Raoult's law. Finally, Euler's method enables one to obtain the next point in the residue curve.
If all residue curves, starting from different initial points, are plotted, one obtains the RCM shown in Figure 1 and obtained with Mathematica®. We clearly see that the azeotropes and pure components are extreme points in this RMC.

RCMs using NDSolve to solve a DAE

The following Mathematica® command computes the residue curve from an initial starting point using NDSolve.

```mathematica
sol1 = NDSolve[
{D[x1[t], {t, 1}] == y1[t] - x1[t],
D[x2[t], {t, 1}] == y2[t] - x2[t],
D[x3[t], {t, 1}] == y3[t] - x3[t],
D[T[t], {t, 1}] == 10^7 (x1[t] PS1[t] GAM1[t] + x2[t] PS2[t] GAM2[t] + x3[t] PS3[t] GAM3[t] - P),
T[0] == 57.5898, x1[0] == 0.2, x2[0] == 0.2, x3[0] == 0.6},
{x1, x2, x3, T}, {t, 0, 40},
AccuracyGoal -> Infinity, MaxSteps -> Infinity,
StartingStepSize -> 0.0001, MaxStepSize -> 0.0001]
```

The first three equations are the differential governing equations (see equation 1) written for all three components (acetone, chloroform, and methanol; respectively) while the fourth equation is the algebraic equation giving the bubble point temperature. Since \(\frac{dT}{dt} \) is finite and \(10^7 \) is very large, we must have the following algebraic relation:

\[
P = x_1 P_1^{sat} \gamma_1 + x_2 P_2^{sat} \gamma_2 + x_3 P_3^{sat} \gamma_3 \quad \text{(7)}
\]

The second approach gives the same result as shown in Figure 1. The first method presented requires more computational time.

Conclusions

Mathematica® graphical and numerical features can be very helpful in computing RCM's for different ternary mixtures using all
kind of thermodynamic models and conditions. In fact, one can easily extend this work to other thermodynamic models such as NRTL, to other ternary mixtures or to higher total pressures where deviation from ideality in the gas phase must be taken into account. The author will show in a future paper that similar ideas can be used to compute RCMs when reactions between components are taking place such as in the case of the methyl acetate and isopropyl acetate chemistries. These classic problems are junior and senior level study material at the National Institute of Applied Sciences and Technology in Tunis. The students excel in these types of problems despite the fact that they do not have prior knowledge of Mathematica®. The notebooks are available from the corresponding author upon request or at Wolfram Research.[4] The authors have also computed the same residue curve map using Matlab and Simulink.[5]

Biographical Information

Dr. Housam Binous is a full time faculty member at the National Institute of Applied Sciences and Technology in Tunis. He earned a Diplôme d'ingénieur from the Ecole des Mines de Paris and a Ph.D. from the University of California at Davis.

Aïda Wakad and Saïda Ben Achour are students in the Masters program at the National Institute of Applied Sciences and Technology in Tunis. They performed the RCM calculations, as a partial requirement to obtain their engineering degree, under the supervision of Dr. Housam Binous.

References

