An Old Exam Question from Ch. 4

The ammonia $\left(\mathrm{NH}_{3}\right)$ synthesis process consists mainly of two major units: a reactor, and an ammonia condenser. The flow rate of the fresh feed to the process is $100 \mathrm{~mol} / \mathrm{min}$ and its molar composition is $75.16 \% H_{2}, 24.57 \% N_{2}$, and $0.27 \% \mathrm{Ar}$ (Inert). The fresh feed is mixed with the recycle gas before it enters the reactor; the gas entering the reactor is 79.52 mole $\% \mathrm{H}_{2}$. The reactor effluent is fed to the ammonia condenser where all the ammonia formed is condensed. The gas leaving the condenser contains $80.01 \mathrm{~mole} \% \mathrm{H}_{2}$ and no ammonia. The product ammonia contains no dissolved gases. Part of the gas stream leaving the condenser is purged to prevent the argon from building up in the process while the remaining is recycled.
a) Draw a flow chart of the process and label all the unknowns.
b) Calculate the molar flow rates of the recycled and purged streams.
c) Calculate the single pass conversion of hydrogen.

2) Mixing point

Unknowns: $\left\{\begin{array}{l}n_{R} \\ n_{0} \\ x_{0}\end{array}\right.$, equations $\left\{\begin{array}{l}H_{2} \text { balance } \\ N_{2} \text { balance } \\ A_{r} \text { balance }\end{array} \Rightarrow n_{d f}=0\right.$

Ar balance: $\quad 0.1093 n_{R}+0.27=X_{0} n_{0}$
N_{2} balance: $\quad 0.0906 n_{R}+24.57=0.2048 n_{0}-X_{0} N_{0}$

$$
+5
$$

H_{2} balance: $\quad 0.8001 n_{R}+75.16=0.7952 n_{0}$

From (3) $\quad n_{0}=1.006 n_{R}+94.52$
(4)
(4) and (1) in (2):

$$
\begin{aligned}
& \Rightarrow 0.0906 n_{R}+24.57=0.2060 n_{R}+19.36-0.27-0.1093 n_{R} \\
& \Rightarrow n_{R}=898.36 \mathrm{~mol} / \mathrm{min} \\
& \Rightarrow n_{0}=998.27 \mathrm{~mol} / \mathrm{min} \\
& \Rightarrow x_{0}=0.0986 \mathrm{mal} \text { Ar } / \mathrm{mal}
\end{aligned}
$$

3) Splitting point $n_{C}=n_{R}+n_{p}$

$$
\Rightarrow \cap_{c}=900.83 \mathrm{mal} / \mathrm{mm}
$$

4) Condenser.: unkenowors $\left\{\begin{array}{l}n_{H_{2}} \\ n_{N_{2}} \\ n_{A_{P}}\end{array} \quad\right.$, equations $\left\{\begin{array}{l}N_{2} \text { balance } \\ H_{2} \text { balance } \\ \text { Ar balance }\end{array}\right.$

Ar-balance:

$$
\begin{aligned}
& n_{A_{r}}=X_{C} n_{C}=0.1093 \times 900.83=98.46 \mathrm{mal} A_{r} / \mathrm{min} \\
& n_{N_{2}}=\left(0.1999-X_{C}\right) n_{C}=81.62 \mathrm{mal} \mathrm{~N}_{2} / \mathrm{min} \\
& n_{H_{2}}=0.8001 n_{C}=720.75 \mathrm{mal} H_{2} / \mathrm{min}
\end{aligned}
$$

\therefore males prayed $=n_{p}=2.47 \mathrm{~mol} / \mathrm{min}$
moles recycled $=\cap_{R}=898.36$ mol $/ \mathrm{mim}$
c) Single pass conversion of $H_{2}=\frac{n_{0} * 0.7952-n_{H_{2}}}{n_{0} * 0.7952}=0.0920$

$$
=9.2 \%
$$

