Decision Making with Utilities

- In some situations, there maybe factors that make decision making using expected value unacceptable.
- This usually happens when
 - the amount of loss is so big that it will not be acceptable even at low probability (e.g. insurance)
 - the amount of profit is so big that it will be sought even at low probability (e.g. lottery)

Utility is a measure of the worth of an outcome to the decision maker. It reflects the decision maker's attitude towards risk

- Consider the 3 decision alternatives
 - d_1 = make investment A
 - d_2 = make investment B
 - $d_3 = do not invest$
- The states of nature are
 s₁ = prices go up
 s₂ = prices remain stable
 - $s_3 = prices go down$

 \rightarrow P(s₁)=0.30 \rightarrow P(s₁)=0.50 \rightarrow P(s₃)=0.20

Payoff Table

	States of nature		
Decision	Prices up	Prices stable	Prices down
	S ₁	S ₂	S ₃
d ₁	30,000	20,000	-50,000
d ₂	50,000	-20,000	-30,000
d ₃	0	0	0

Decision based on Expected Value

 $\begin{aligned} \mathsf{EV}(\mathsf{d}_1) &= 0.3(30,000) + 0.5(20,000) + 0.2(-50,000) = 9,000 \\ \mathsf{EV}(\mathsf{d}_2) &= 0.3(50,000) + 0.5(-20,000) + 0.2(-30,000) = - \\ 1,000 \\ \mathsf{EV}(\mathsf{d}_3) &= 0.3(0) + 0.5(0) + 0.2(0) = 0 \end{aligned}$

Therefore, SELECT d_1 with EV = 9,000

- But, suppose that this company is in financial difficulty and the loss of 50,000 would be detrimental to it.
- In such a case, d_1 is not desirable
- To deal with this situation, we need to determine the **utilities** of the monetary values in the decision

Determining Utilities

- Let U(M) = Utility of M [M=Monetary Amount]
- Assign (arbitrarily) utility to the highest monetary value in payoff table
 → U(50,000) = 10
- Assign (arbitrarily) utility to the lowest monetary value in payoff table
 - → U(-50,000) = 0 Note: U(50,000) > U(-50,000)
- Assign utilities to the other values as follows

Assigning Utilities to Middle Values

Consider the payoff of 30,000:

Decision maker is asked to select one of two choices:

- 1. a guaranteed amount of 30,000, or
- 2. participate in the following lottery DM get a payoff of 50,000 with probability p, or a payoff of -50,000 with probability (1-p)
- a. If *p* is close to 0, DM will prefer the 30,000
- b. If *p* is close to 1, DM will prefer lottery
- c. As we increase *p* from 0, at what value does DM changes preference to the lottery?
- d. At this value of *p*, DM has no preference between the two choices (equivalent)

Assigning Utility to the Value 30,000

- Suppose the DM chooses *p*=0.95
- Now we can determine the U(30,000) as follows: U(30,000) = pU(50,000) + (1-p)U(-50,000) = 0.95 (10) + 0.05 (0)= 9.5
- Note that at p=0.95 the EV(lottery) is: EV(lottery) = 0.95(50,000)+0.05(-50,000) = 45,000

- DM is willing to accept a guaranteed amount of 30,000 rather than risk anything more than 5% chance of a loss of 50,000
- The difference between 45,000 and 30,000 is referred to as the risk premium.
- The DM is willing to pay 15,000 risk premium to avoid the 5% chance of losing 50,000.

Assigning Utility to the Value -20,000

- As before, DM is asked to select one of two choices:
 - 1. a guaranteed amount of -20,000, or
 - participate in the lottery DM get a payoff of 50,000 with probability *p*, or a payoff of -50,000 with probability (1-*p*)
- For example, we ask DM if *p*=0.90, would he choose lottery or an assured loss of 20,000 (→lottery)
- We lower *p* until point of indifference is reached.
- Suppose at this point *p*=0.55
- Now we can determine the U(-20,000) as follows: U(-20,000) = pU(50,000) + (1-p)U(-50,000) = 0.55 (10) + 0.45 (0)= 5.5

Assigning Utility in General

- We follow the same procedure for all monetary values in the payoff table.
- DM is asked to select one of two choices:
 - 1. a guaranteed amount M, or
 - participate in the lottery DM get a payoff of 50,000 with probability p, or a payoff of -50,000 with probability (1-p)
- We find the probability *p* of indifference.
- Then, we can determine the U(M) as follows: U(M) = pU(50,000) + (1-p)U(-50,000) = p(10) + (1-p)(0) = 10p

Utility of Payoff Values

Monetary	Indifference	Utility
Value	Value of p	Value
50,000	NA	10.0
30,000	0.95	9.5
20,000	0.90	9.0
0	0.75	7.5
-20,000	0.55	5.5
-30,000	0.40	4.0
-50,000	NA	0

Utility Table

	States of nature		
Decision	Prices up	Prices stable	Prices down
	S ₁	S ₂	S ₃
d ₁	9.5	9.0	0
d ₂	10	5.5	4.0
d ₃	7.5	7.5	7.5

Decision based on Expected Utility

$$EU(d_1) = 0.3(9.5) + 0.5(9.0) + 0.2(0) = 7.35$$
$$EU(d_2) = 0.3(10) + 0.5(5.5) + 0.2(4.0) = 6.55$$
$$EU(d_3) = 0.3(7.5) + 0.5(7.5) + 0.2(7.5) = 7.50$$

Therefore, SELECT d_3 [Do Not Invest] with EU = 7.50

Ranking of Alternative with Expected Utility

Rank of Alternative	Expected	Expected
	Utility	Monetary Value
Do not Invest	7.50	0
Investment A	7.35	9,000
Investment B	6.55	-1,000

Investment A is rejected because the 20% of 50,000 loss was too RISKY for the DM. DM, in this case, is a Risk Avoider

Decision Maker is a Risk Taker

- Suppose the DM was feeling comfortable about the financial status of his company
- DM was seeking investments that may lead to high payoff and was willing to take risk
- The DM will follow the same procedure for determination of utilities of the payoffs
- But he will take the choice of the Lottery at lower probabilities

Utility of Payoff Values for a Risk Taker

Monetary	Indifference	Utility
Value	Value of p	Value
50,000	NA	10.0
30,000	0.50	5.0
20,000	0.40	4.0
0	0.25	2.5
-20,000	0.15	1.5
-30,000	0.10	1.0
-50,000	NA	0

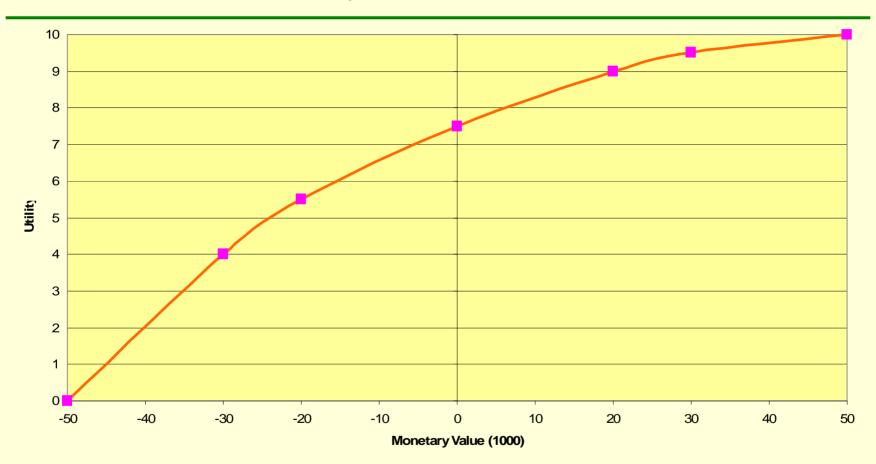
Utility Table

	States of nature		
Decision	Prices up s ₁	Prices stable	Prices down s ₃
d ₁	5.0		0
d ₂	10	1.5	1.0
d ₃	2.5	2.5	2.5

Decision based on Expected Utility

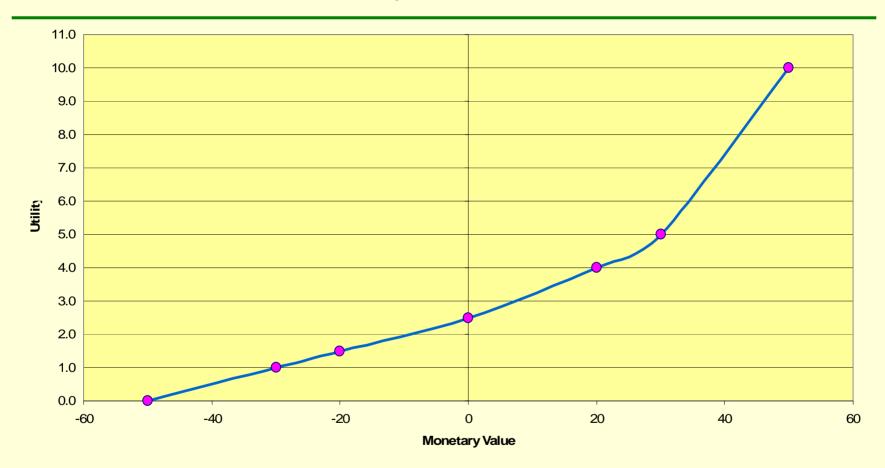
$$EU(d_1) = 0.3(5.0) + 0.5(4.0) + 0.2(0) = 3.50$$

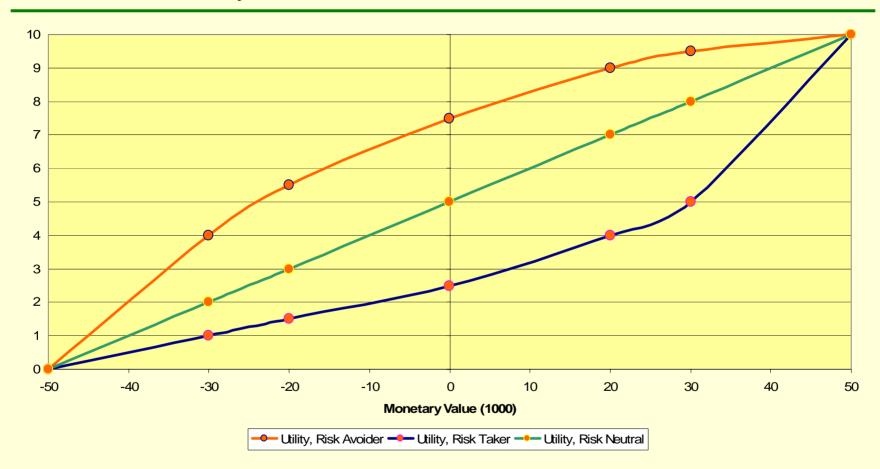
$$EU(d_2) = 0.3(10) + 0.5(1.5) + 0.2(1.0) = 3.95$$


$$EU(d_3) = 0.3(2.5) + 0.5(2.5) + 0.2(2.5) = 2.50$$

Therefore, SELECT d_2 [Investment B] with EU = 3.95

Ranking of Alternative with Expected Utility


Rank of Alternative	Expected	Expected
	Utility	Monetary Value
Investment B	3.95	-1000
Investment A	3.50	9,000
Do not Invest	2.50	0


- Investment B is selected even though EV is negative.
- DM, in this case, is a Risk Taker and willing to seek the opportunity of 50,000 payoff in Investment B.

Utility Function for Risk Avoider

Utility of a Risk Taker

Utility Function for Risk Avoider, Risk Taker, and Risk Neutral

EV vs. EU

- As can be seen from the graph above, EV and EU will result in the same recommendation for a risk neutral DM.
- There is a range of monetary values where the DM is neutral → the EV approach should be selected because EV & EU will be in agreement.
- The range is where the payoffs (profit or loss) are not considered great.