Probability Basics

Probability

- A numerical measure of the likelihood of occurrence of an event
- Provides description of uncertainty

Experiments

- A process that generates well-defined outcomes
- At each repetition of experiment, one and only one outcome will occur

Experiment	Experimental outcome
Flip a coin	Head, tail (side 1, side
Play a game	₩in, lose, tie
Roll a dice	1, 2, 3, 4, 5, 6
Inspect a part	Pass, fail

- Sample space is the set of all experimental outcomes
 - Flip a coin: S = {Head, Tail}
 - Roll a die: S = {1, 2, 3, 4, 5, 6}

Assigning Probabilities

- Must adhere to two conditions:
 - The probability of an outcome:
 - $0 \le P(E_i) \ge 1$ for all i
 - $E_i = i$ th Experimental outcome
 - The sum of the probabilities of all outcomes: $\sum P(E_i) = 1$

Methods of assigning Probabilities

- 1. Classical Method
 - When it is reasonable to assume that all outcomes are equally likely:
 - > $P(E_i)=1/n$, n= number of outcomes

Methods of assigning Probabilities

- 2. Relative Frequency Method
 - Relative frequency based on limited repetition of the experiment
 - In a sample of 200 parts 10 are defective
 P (defective) = 10/200 = 0.05

Methods of assigning Probabilities

- 3. Subjective Method
 - Used when the classical or the relative frequency method are not possible, or as a support for these methods
 - Probability is determined as the *degree of belief* that an outcome will occur based on available information and past experience
 - Assignment must ensure the two conditions of assignment are applicable

- An event is a collection of outcomes (sample points)
 - Roll a die experiment: define event A as outcome is an even number
- P (event) = sum of probabilities of sample points

$$P(A) = P(2) + P(4) + P(6)$$

= 1/6 + 1/6 + 1/6 = $\frac{1}{2}$

Complement of an Event

Union of Two Events

sample points in A or B or both

Intersection of Two Events

Addition Law

- Events that are mutually exclusive do not share any sample points in common (probability of the intersection is zero)
- Therefore:

 \geq P (A U B) = P (A) + P (B) – P (A \cap B)

Becomes ->

P(A U B) = P(A) + P(B)

Conditional Probability

Independent Events

• Two events are independent if

P (B/A) = P (B) or P (A/B) = P (A) [The probability of one does not affect the probability of the other]

• Are mutually exclusive events independent events?

Suppose we have the following data for why students consider joining a college (Question 13)

	Reason for Joining			
	quality	Cost	Other	Totals
Full time	421	393	76	890
Part time	400	593	46	1039
Totals	821	896	122	1929

Events

Event student is full time	F
Event student is part time	Т
Event reason is Quality	Q
Event reason is Cost	С
Event reason is Other	Ο

Joint Probability Table

		Reason for Joining			
		Quality	Cost	Other	Totals
		(Q)	(C)	(O)	
	Full time	0.22	0.20	0.04	0.46
Status	(F)				
	Part time	0,21	0.31	0.02	9.54
	(T)				
	Totals	0.43	0.46	0.06	1.00
Joint probabilities Marginal probabilities					

Probabilities of Events

Probabilities of Events

Student is FT → ? P (Reason is Quality)	
Student is PT → ? P (Reason is Quality	
Are T and Q independent?	

Multiplication Law

 Multiplication law is use to find the intersection between two events

 $P (A \cap B) = P (A/B) P(B)$ $P (A \cap B) = P (B/A) P(A)$

• If A and B are independent then

 $P(A \cap B) = P(A) P(B)$

• Bayes' theorem is used to update the probabilities of events based on new information (a sample, a test, etc.)

Example

- A factory receives parts from two suppliers
 - A_1 = Event part is from supplier 1 \rightarrow P (A_1) = 0.65
 - A_2 = Event part is from supplier 2 \rightarrow P (A_2) = 0.35
 - G = Event part is good
 - B = Event part is bad
 - P $(G/A_1) = 0.98$ P $(B/A_1) = 0.0.02$ P $(G/A_2) = 0.98$ P $(B/A_2) = 0.0.02$
- Suppose we select a bad part: What is the probability that it came from supplier 1? P (A₁/B) What is the probability that it came from supplier 2? P (A₂/B)

Probability Tree for Two-supplier Example

Probability Outcome

$$P(A / B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A)P(B/A)$$

$$P(B) = P(A \cap B) + P(A \cap B) = P(A)P(B/A) + P(A)P(B/A)$$

$$P(A / B) = \frac{P(A)P(B/A)}{P(A)P(B/A) + P(A)P(B/A)}$$

$$P(A / B) = \frac{(0.65)(0.02)}{(0.65)(0.02) + (0.35)(0.05)} = \frac{(0.013)}{(0.013) + (0.0175)}$$

$$= \frac{(0.013)}{(0.0305)} = 0.4262$$
Similarly
$$P(A / B) = \frac{P(A)P(B/A)}{P(A)P(B/A) + P(A)P(B/A)}$$

$$= \frac{(0.0175)}{(0.0305)} = 0.5738$$

Bayes' Theorem: Tabular Procedure

(1)	(2)	(3)	(4)	(5)
	Prior	Cond	Joint	Posterior
Event	Prob	Prob	Prob	Probability
A _i	$P(A_i)$	P(B/A _i)	P(A <i>i</i> ∩ B)	$P(A_i/B)$
A ₁	0.65	0.02	0.0130	0.0130/0.0305 = 0.4262
A_2	<u>0.35</u>	0.05	<u>0.0175</u>	0.0175/0.0305 = <u>0.5738</u>
	1.00		P(B) = 0.0305	1.0000