LECTURE NO. 7 & 8

SETTING OF CEMENT AND MICROSTRUCTURE OF HYDRATED CEMENT PASTE

Objectives:

- To explain the setting of a cement
- To explain the factors affecting setting of cement
- To explain the properties of the major hydration products
- To explain the different components of the microstructure of a hydrated cement paste
 - C-S-H
 - CH
 - Calcium sulfoaluminates
 - Minor components
 - Porosity

SETTING OF CEMENT

- Setting is the term used to describe the stiffening of the cement paste
- Setting is also refereed as the change of the cement paste from a fluid to a rigid state
- Although, during setting, the paste acquires some strength, for practical purposes it is important to *distinguish setting from hardening*
- Hardening refers to the gain of strength of a set cement paste
- Since the flash setting of C₃A is prevented by addition of gypsum, C₃S sets first
- Initial, final, and false settings of cement have already been defined in a previous lecture

Effect of cement composition:

- Setting time is affected by the percentages of C₃S, C₃A, and gypsum in the cement
- In case of low or no gypsum, even a lower percentage of C₃A may cause flash set reducing setting time
- In case of adequate amount of gypsum, even a high percentage of C₃A may not cause flash set and thereby may not affect the setting time. In this case percentage of C₃S controls the setting time.

Effect of fineness of cement:

- With increase in fineness the surface area per unit mass of cement increases.
- Since hydration starts at the surface of the particles, it is the total surface area of cement that affects the rate of hydration and therefore the setting time
- Therefore, the setting time decreases with increase in the fineness
- Since increase in the fineness increases reactivity of C₃A, the amount of gypsum is required to be increased for cements with higher fineness

Effect of fineness of cement:

Following are the other properties of cement paste affected by the fineness of cement:

Increase in fineness helps in rapid development of strength and reducing bleeding

Finer cement leads to a stronger reaction with alkalireactive aggregate and increases the chances of shrinkage and cracking of the cement paste

Effect of temperature:

- Setting time is more at low temperatures
- Setting time decreases with a rise in temperature, but above about 30°C, a reverse effect may be observed

PROPERTIES OF THE HYDRATION PRODUCTS

Summary of Properties of the Hydration Products of Portland Cement Compounds

Compound	Specific Gravity	Crystallinity	Morphology in Pastes	Typical Crystal Dimensions in Pastes	Resolved byª
C-S-H	2.3–2.6 ^b	Very poor	Spines; Unresolved morphology	$1 \times 0.1 \mu m$ (Less than 0.01 μm thick)	SEM, TEM
CH	2.24	Very good	Nonporous striated material	0.01–0.1 mm	OM, SEM
Ettringite	~1.75	Good	Long slender prismatic needles	$10 imes 0.5 \mu\mathrm{m}$	OM, SEM
Monosulfo- aluminate	1.95	Fair-good	Thin hexagonal plates; irregular "rosettes"	$1 \times 1 \times 0.1 \mu m$	SEM

^aOM, optical microscopy; SEM, scanning electron microscopy; TEM, transmission electron microscopy. ^bDepends on water content.

MICROSTRUCTURE OF HYDRATED CEMENT PASTES

20 µm

Unhydrated material

Water-filled capillary pores **і**д с-s-н

Calcium hydroxide

MICROSTRUCTURE OF HYDRATED CEMENT PASTES

- As shown in the previous slide, *microstructure* of cement paste is formed in sequence as hydration proceeds
- The formation of microstructure involves the replacement of water confined between cement particles in the fluid paste with solid hydration products that form a continuous matrix and bind the residual cement grains together over a period of time
- The formation of the continuous solid matrix happens because the hydration products ($\rho \approx 2.3$) occupy a greater volume than the original cement compounds ($\rho = 3.2$)

<u>C-S-H</u>

- C-S-H constitutes about 50% to 67% of the volume of the hydrated paste and must therefore dominate its behavior
- During early hydration, C-S-H grows out from the cement particle surface into surrounding water-filled space in the form of low-density arrangement of thin sheets (termed as early or "outer" product), as shown in below

<u>C-S-H</u>

• The morphology (i.e., forms and structures) of C-S-H product obtained during early hydration (termed as early or "outer product) is shown in the following figure:

•As shown, this form of early or outer C-S-H product has a higher microporosity and on drying rearranges to a variety of morphological forms and coarser porosity

•This C-S-H also contains a high level of impurities (aluminum, sulfate, alkalis)

SEM micrograph showing morphology of C-S-H formed during early hydration

<u>C-S-H</u>

- Once hydration has become diffusion controlled, C-S-H forms primarily as a denser coating around the hydrating cement grains, termed as late or "inner" product
- The morphology (i.e., forms and structures) of C-S-H product obtained during late hydration is shown in the following figure:

SEM micrograph showing morphology of C-S-H formed during late hydration

- •As shown, coatings of cement grains by late or outer C-S-H product form the diffusion barrier and thicken with time, growing inwards as well as outwards
- •The coatings maintain the shape of the original grains and surround unhydrated residues

<u>CH</u>

- CH crystals occupy about 20 to 25% of the hydrated paste volume
- CH only grows where free space is available
- CH *morphology may vary*, being found as small equidimensional crystals; large flat, platy crystals, large thin, elongated crystals; and all variations in between
- CH morphology is particularly affected by admixtures and by the temperature of hydration
- The *morphologies(i.e. forms and structures)* of CH are shown in the following figures

COMPONENTS OF THE MICROSTRUCTURE OF HYDRATED CEMENT PASTE

Optical micrograph of CH after 7 days hydration

COMPONENTS OF THE MICROSTRUCTURE OF HYDRATED CEMENT PASTE

Optical micrograph of CH after 15 days hydration

COMPONENTS OF THE MICROSTRUCTURE OF HYDRATED CEMENT PASTE

<u>CH</u>

SEM micrograph of CH after 64 days hydration

Calcium Sulfoaluminates

- As mentioned earlier,
 - the primary calcium sulfoaluminate (simply called as ettringite) is formed as a result of reaction between C₃A and sulfate ions supplied by dissolution of gypsum
 - The secondary calcium sulfoaluminate (simply called as monosulfoaluminate) is formed as a result of reaction between C₃A and ettringite after sulfate is all consumed
- The calcium sulfoaluminates are a relatively minor constituent of a mature paste, making up about 10 to 15% by volume
- Because of their less amount they play minor role in the microstructure of the hydrated cement paste and are therefore omitted from figure showing the microstructure
- SEM micrographs of calcium sulfoaluminates are shown as follows:

COMPONENTS OF THE MICROSTRUCTURE OF HYDRATED CEMENT PASTE

Calcium Sulfoaluminates

SEM micrograph of primary calcium sulfoaluminate (ettringite)

COMPONENTS OF THE MICROSTRUCTURE OF HYDRATED CEMENT PASTE

Calcium Sulfoaluminates

SEM micrograph of secondary calcium sulfoaluminate (monosulfoaluminate)

Minor Compounds

- Unhydrated residues of the cement grains and small amounts of magnesium hydroxide are the minor components of the microstructure of a hydrated paste
- These components are not likely to amount more than 5% by volume in mature pates

<u>Porosity</u>

- Porosity is the *another major component* of the microstructure
- Porosity (pores and their-size distribution) of the microstructure of a hydrated cement paste is found to significantly affect the physical properties of paste
- Pores in a hydrated paste are classified into following two types:
 - *i.* Capillary pores are the remnants of water-filled space that exists between the partially hydrated cement grains
 - *ii.* Gel pores can be regarded as a part of the C-S-H. Gel pores are included in the volume occupied by C-S-H

Capillary pores and gel pores are shown in the next slide

COMPONENTS OF THE MICROSTRUCTURE OF HYDRATED CEMENT PASTE

Simplified model of paste structure.

- Solid dots represent gel particles;
- Interstitial spaces are gel pores;
- Spaces such as those marked C are capillary pores.

Size of gel pores is exaggerated

Classification of Pore Sizes in Hydrated Cement Pastes

	Designation	Diameter	Description	Role of Water	Paste Properties Affected
<u>Porosity</u>	Capillary pores	10-0.05 μm (50 nm) 50 ~10 nm	Large capillaries Medium capillaries	Behaves as bulk water Moderate surface tension forces generated	Strength; permeability Strength; permeability; shrinkage at high humidities
	Gel pores	10–2.5 nm	Small (gel) capillaries	Strong surface tension forces generated	Shrinkage to 50% RH
	2.5~0.5 nm	Micropores	Strongly adsorbed water; no menisci form	Shrinkage; creep	
		<~0.5 nm	Micropores ''interlayer''	Structural water involved in bonding	Shrinkage; creep

Porosity

There are two main *methods* that are used *to measure the pore-size distribution* of hardened cement paste:

- a. Mercury intrusion porosimetry, MIP, (gives a better measure of capillary porosity)
- b. Physical adsorption of gases (gives a better measure of gel porosity)

Porosity

MIP:

- MIP involves forcing mercury into the pore system of the paste by the application of external pressure.
- The pressure required is inversely proportional to the pore radius
- MIP curves, as shown in the following figure, may be obtained for hydrated cement pastes

shrinkage at high humidities

Self -desiccation

•Because most of the products of hydration are colloidal during hydration, the surface area of the solid phase increases enormously, and a large amount of free water becomes adsorbed on this surface

•If no water movement to or from the cement paste is permitted, the reactions of hydration use up the water until too little is left to saturate the solid surfaces, and the relative humidity within the paste decreases

•The above phenomenon is known as "self-desiccation"

•At lower w/c ratios, self-desiccation leads to a lower hydration (because of the shortage of water) compared with a moist-cured paste

•However, at w/c ratios > 0.5, the hydration remains unaffected by self-desiccation