DEPARTMENT OF CIVIL \& ENVIRONMENTAL ENGINEERING - KFUPM Numerical \& Statistical Methods in Civil Engineering CE 318 (2-3-3)

Course Material:

- Textbook: Numerical Methods for Engineers; 6th Edition; Chapara, S.C. \& Canale, R.P. - 2010
- Extra Notes: supplied in class.
Instructor: Dr. Saeid A. Alghamdi; Office: 16-150; Phone: 2570; e-mail: saghamdi@kfupm.edu.sa

COURSE OUTLINE: 2015-2016 (Academic Term 151)

Dates (Weeks)	Lectures \& Subject Matter(s) Textbook sections (Comp-Lab Sessians)	Sub-topics [Additional suggested relevant textbook-sections]
$\begin{aligned} & \text { Aug. } 23-31 \text {, } \\ & 2015 \\ & \quad(1 ; 2) \end{aligned}$	1-3 General Introduction \& Mathematical Madeling (Programming Fundamentals and Computational Considerations): $[1.1 ; 1.2 ; 2.4 ; 3.1-3.4 ; 4.1]$	Analytical vs. numerical methods; storage of numbers and characters; use of subscripts; Taylor series and analysis of computational errors; subroutines; flowcharts; computer methods (direct; iterative; logical); aspects of good programming; example-problems. PT1.1-PT1.3.2; 2.3; 2.5; 2.6]
Aug. 258 Sept. D2	Lab-Sessions (1; 2)	Basics of Programming Touls (e.g.: Excel; FIRTRAN; Mathematica); Computing Applications: Machine Epsilon, Errars and Precision.
$\begin{aligned} & \text { Sept. } 01-16 \\ & (2 ; 3 ; 4) \end{aligned}$	4-7 Interpolation and Extrapolation: $\begin{aligned} & \text { [18.1; 18.3; } 18.6 \text { 17.1; 17.2; } \\ & 21.1 ; 21.2 ; 22.1 ; 22.2 ; 22.4 ; 23.2] \end{aligned}$	Introduction; interpolation and method of spline functions; the curve fitting using least squares; numerical integration; Newton-Cotes Formulas; Gauss quadrature; Richardson Extrapolation; example-problems. [18.4; 18.5; 23.5; 24.4]
Sep. 198 Sept. IE	Lab-Sessions (3; 4)	Subtractive Errors; DO-Loups; Cubic Spline Interpolation; Curve Fitting.
Sept. 15 (4)	8 Series Appraximations and Roats of Equations: [4.1; 4.2; 5.1-5.3]	Series solutions; study of convergence; iterative substitutions; Roots of equations. [PT2.1]
Sept. 18-28, 2015 Hajj - Eid - Recess		
Sept. 29 - Oct. 07 (5; B)	$9-11$ Series Appraximations and Roots of Equations (cont'd): [6.1; 6.2; 6.6; 7.7]	Roots of equations; interpolation methods (bisection); extrapolation methods (Newton-Raphson method); solution of nonlinear equations; acceleration of convergence; example-problems.
Dtt.. 178 Oct.. 21	Lab-Sessions (5; ©)	Numerical Integration; Roats of Equations.
Wednesday, Dct. 14, 2015 - First Major Examination		
$\begin{gathered} \text { Oct. } 11-14 \\ (6 ; 7) \end{gathered}$	$12 ; 13$ Solution of Algebraic Equations: [9.1-9.4]	System of linear equations; Matrix notations and operations; Gaussian elimination; LU-factorization; Cholesky's method; banded equations; iterative methods; example-problems. [PT3.1; PT3.2.2]
Det. 28	Lab-Session (7)	Matrix Algebra; Solution of a System of Linear Equations.
$\text { Oct. } 18-21$ (8)	$14 ; 15$ Solution of Algebraic Equations (cont'd): [10.1-10.3; 11.1-11.3]	Iterative methods (Gauss-Seidel method); pivoting; illconditioning; example-problems. [PT3.3; 12.2]
Nov. 14	Lab-Session (8)	Matrix Algebra; Solution of a System of Linear Equations (cont'd).
Oct. 25 - Nov. 04, 2015 (4, 1])	16-19 Methods of Finite Differences: $\begin{aligned} & {[23.1 ; 23.2 ; 23.5 ; 27.1 ; 27.2 ;} \\ & 30.1 ; 30.2] \end{aligned}$	Introduction; first and second order equations; finite difference discretization in 1D; boundary conditions; solution of time-independent problems; stability analysis of finite differences; example case studies (e.g.: Laplace's equation; Diffusion equation in 1D); example-problems. [27.1.2]
Nov. 11	Lab-Session (9)	Salution a Diffusion Equation.

COURSE DUTLINE_15: 2015-20118 "cont'd"		
Dates (Weeks)	Lectures \& Subject Matter(s) Textbook sections (Comp-Lab Sessians)	Sub-topics [Additional suggested relevant textbook-sections]
$\begin{aligned} & \text { Nov. 08-25 } \\ & 11-13 \end{aligned}$	20-25 Statistical and Probability Analysis: [Class Handouts]	Introduction; Basic concepts of probabilities; mathematical background; simple measures of statistical analysis; data distribution; normal distribution; confidence interval; analysis of variance: [PT5.2.1-PT.5.2.3]
Wednesday Nov. 11, 2015 - Second Majar Examination		
Nav. 18 $\text { Nov. } 25$	Lab-Session (ID; II)	Statistical analysis (mean; variance); data analysis and normal distribution; analysis of variance (ANDVA); Hypothesis-testing \& decision-making.
Nov. 29 - Dec. 02 14	$\text { 26; } 27$ Methods of Design Dptimization: [15.1-15.2]	General introduction; types of problems; linear programming; the Simplex Method; applications to civil engineering design problems; example-problems. [PT4.1-PT4.3; 16.2]
Dec. 12	Lab-Session (12)	Linear Programming Using Excel.
Dec. 06-09 14, 15	$\begin{array}{\|l} \hline \text { 28; } 29 \\ \text { Design Applications (Case-studies): } \\ \text { [15.3] } \end{array}$	Computer applications to typical problems selected from one of the four specialties of civil engineering (depending on a student's interest).
Dec. 1 [8	Lab-Session (13)	Engineering Analysis; Design Dptimization.
Dec. 13, 2015 15 (cont'd)	30 Dver-all Review 8 Presentations of Projects	Over-all Review \& Presentations of Projects.
-	-	Presentations of Term Projects.

Frading Polity for the Caurses:

1. Attendance ${ }^{\wedge} 04 \%$
2. Homework \& Lab. Assignments 15\%
3. Exam 1 [Wednesday, Oct. 14, 2015]* 15\%
4. Exam 2 [Wednesday, Nov. 11, 2015] 20\%
5. Lab. Project [TO BE ASSIGNED] ${ }^{@} 10 \%$
6. Final Exam [TO BE SCHEDULED] 30\%

TOTAL

Notes:

Due to critical importance of timely class-attendance, the regulations set by KFUPM are enforced and it will affect other grade segments [for: Class lectures \& Comp. Lab. sessions].
Major exams are conducted within the computer-laboratory session.
${ }^{@}$ Each student should arrange for a meeting to select the project for the course.

