DEPARTMENT OF CIVIL ENGINEERING - KFUPM
 Numerical and Statistical Methods in Civil Engineering
 CE 318-51- 2011-2012 (111)

Computer Lab. Sessions NO. 03 \& 04

Subj.: Using Mathematica software for Curve-fitting.
DATE: Oct. 03,'11
Objective: Basic introduction to Mathematica software mainly to perform function-graph and function-curve linear and nonlinear fitting using the software.

Plotting Lab Data using Mathematica software ${ }^{\odot}$

The purpose of these notes is to show how Mathematica can be used to plot and analyze laboratory data. This is a shortened version of the document, Graph Plotting and Data Analysis using Mathematica, which you should read for a more complete description of Mathematica plotting commands.

It is a good practice to frequently reset everything before you begin a Mathematica session.

```
In[1]:= Clear["Global` * "]
```


Reading data from a laboratory experiment:

Most of the data that you obtain in the laboratory will consists of pairs of (x, y) values, for example:

```
In[2]:= data ={{0 ,6.62} ,{1 ,6.73} ,{2 ,6.86}, {3 ,6.98},{4 ,7.03}};
```

One problem with this method of data entry is that becomes laborious to type many curly brackets and commas, as well as increasing the possibility of making mistakes. An alternate method is to first create a data file using a text editor. A file which consists of two columns of data might look like this, with a space between two columns of numbers:

8.1	.5
9.2	1
10.5	1.5
13.1	2
15.4	2.5
18	3
20.4	3.5
22.9	4
24.5	4.5
26.3	5

Save the file under a meaningful name, such as "labdata.dat". Then use Mathematica commands to refer to the data-file to plot the data and perform function curve fitting.

Utilize the notes provided (herewith) to run the sample cases provided and then do the same to obtain a quadratic and a cubic curve-fitting for the following data. Comapre your results.

```
x:22.3, 27.3, 29.7, 33.2, 39.7, 44.7, 49.6, 62.1, 67, 74.5, 84.4, 94.9, 99.3
y:1501, 1298, 1054, 987, 905, 824, 643, 581, 555, 505, 398, 344, 327
```


Basic Selected Notes on Mathematica:

There are several methods for telling Mathematica how to read a set of data. If the file is not already in your default working directory, you will need to use SetDirectory to make sure that Mathematica reads the data from the directory where you keep your files. For example (the exact syntax will depend on your operating system - Windows, Macintosh or Linux/Unix):

```
In[3]:= SetDirectory["c : \labs\sampledata"];
```

Let's read in the data file "labdata.dat".
In [4] $:=$ labdata $=$ Import ["labdata. dat "];
Plot this using ListPlot:

```
In [5] := rawdata = ListPlot[labdata]
```


out [5] = -Graphics -
You can add extra parameters if you like. Use whichever is most appropriate for your situation. Fit these points to a straight line:

In $[6]:=$ result $=$ Fit $[1$ abdata, $\{1, x\}, x]$
out $[6]=4.92667+4.33212 \mathrm{x}$
Obtain the line of best fit

```
In [7]:= bestline = Plot [result, {x, 0, 5}]
```


Polynomial Curve Fitting

You can fit data to any polynomial by including as many terms as you need inside the curly brackets. The straight line is just a special case. Thus to fit a quadratic function to the data file "data2.dat", type

```
In [12]:= 1abdata2 = Import["data2.dat"]
Out[12]={{0,53.9},{1,39.3},{2., 23.},{3, 15.4},
    {4.,9.7}, {5., 10.4}, {6., 12.4},
    {7., 19.8}, {8, 24.2},{9,41.3},{10,63.9}}
In [13] := abc = Fit[labdata2, {1, x, x^2}, x]
out[13]=54.6923-19.0243x+1.96888 x
In [14]:= Plot[abc, {x, 0, 10},
    Epilog }->\mathrm{ {PointSize[0.02],
            Map[Point, labdata2]}]
```


Nonlinear Curve Fitting

If your data does not follow a straight line or simple polynomial, you will need to use Mathematica's NonlinearFit functions:

In [21]:= <<Statistics'NonlinearFit`

Example: Charging a Capacitor

In this experiment we measure the voltage across the capacitor as a function of time. As usual, we'll read the data from a file:

```
In [22]:= chargedata = Import["capch.dat"]
out [22]= {{15,0.7}, {30,1.2},{45,1.71},{60,2.13},
    {75,2.48},{90,2.78},{120,3.29},
    {150,3.66}, {180,3.96}, {210,4.19},
    {240,4.29},{270,4.49}, {300,4.6}}
```

Plot in the usual way:

```
In [23] := cdata = ListPlot[chargedata]
```


out [23] = -Graphics -
Define the function and ask Mathematica to solve for a and b :

```
In [24]:= chrgft = NonlinearFit[chargedata,
    a(1-Exp[-x/b]), x, {a,b}]
Out[24]=4.83133(1- e-0.00957528x}
```

Plot it, adding a few extra features:

```
In [25] := Plot[chrgft, {x, 0, 300},
    AxesLabel- > {"Time(s)", "Voltage"},
    plotLabel }->\mathrm{ "Capacitor Charging Up",
    plotstyle }
            {{Dashing[{0.03}], Thickness[0.005]}},
    Epilog }->\mathrm{ {Pointsize[0.02],
        Map[Point, chargedata]}]
```


out [25] = -Graphics -
The NonLinearRegress function gives output similar to Regress. You may not want to display all the output.

```
In [26]:= chrgft = NonlinearRegress[chargedata,
    a(1-Exp[-x/b]), x, {a,b}]
Out[26]={\mathrm{ BestFitParameters }->
    {a->4.83133,b}->104.436}
                                    Estimate AsymptoticSE CI
        ParametercITable }->\mathrm{ a 
        Est1matedVariance }->0.000897664
    Model 
        ANOVATable }->\mathrm{ Error }110.0098743 0.000897664
            Uncorrected Total 13 140.451
            Corrected Total 12 20.5537
        AsymptoticCorrelationMatrix }
        ( (. 0.896223
        Max Intrinsic
        Max Parameter-Effects 0.0288556
        95. & Confidence Region 0.50111
```


Procedure for Lab.-Report Evaluation:

1. Start working in the assigned session, then complete your computer works preferably within the session or shortly afterwards using the same computing machine on which you may save your work for future use (if necessary).
2. Submit for evaluation your summary of organized computer work assignment in the beginning of the next lab.
3. Your report should include: i)Introduction expalining the work undertaken and its main objectives; ii) Clear outline of the numerical procedure(s) used; iii) Print-out of the work completed; and iv) Summary and conclusions.
