DEPARTMENT OF CIVIL ENGINEERING - KFUPM
Numerical and Statistical Methods in Civil Engineering
CE 318-51- 2011-2012 (111)
Computer Lab. Sessions NO. 09
Subj.: Matrix solution of a system of linear equation $A x=b$, where matrix A is asymmetric.

Objectives: To determine the solution vector \boldsymbol{x} of a general system of linear matrix equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ using Mathematica software.

1. Use Mathematica software to re-run and verify the case-study provided with this sheet. As the matrix A is symmetric use Cholesky decomposition algorithm to determine the solution vector x.
2. Use Mathematica software to solve the following matrix equations using Cholesky decomposition algorithm.
Use the following matrix equation $\mathrm{A} x=\mathrm{b}$ to complete verify your work:

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
2 & 3 & 4 & 1 \\
1 & 4 & 2 & -3 \\
3 & 1 & -3 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3 \\
6 \\
1 \\
-8
\end{array}\right]
$$

Verify your results using EXCEL work-sheet, and provide a print-out proof of the two output results.

Supporting Notes:

Using Mathematica to find roots of equations and to solve a system of equations.
Theorem (Cholesky Factorization). If \mathbf{A} is real, symmetric and positive definite matrix, then it has a Cholesky factorization

$$
\mathbb{A}=\mathbf{u}^{\mathrm{T}} \mathbf{U}
$$

where \mathbf{U} an upper triangular matrix.
Remark. Observe that $\mathbf{L}=\mathbf{U}^{\mathrm{T}}$ is a lower triangular matrix, so that $\mathbf{A}=\mathbf{L} \mathbf{U}$. Hence we could also write Cholesky factorization
$\mathbf{A}=\mathbf{L} \mathbf{L}^{\mathrm{T}}$
where \mathbf{L} a lower triangular matrix.

Theorem ($\mathbf{A}=\mathrm{LU}$; Cholesky Factorization). Assume that \mathbf{A} has a Cholesky factorization $\mathbf{A}^{\boldsymbol{M}} \mathbf{u}^{\mathbf{T}} \mathbf{U}$, where $\mathbf{L}=\mathbf{u}^{\mathbf{T}}$.

Or if you prefer to write the Cholesky factorization as $\boldsymbol{H}=\mathbf{L} \mathbf{L}^{\mathrm{T}}$, where $\mathbf{U}=\mathbf{L}^{\mathrm{T}}$.

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
l_{1,1} & l_{2,1} & l_{3,1} & l_{4,1} & \ldots & I_{\mathrm{n}, 1} \\
0 & I_{2,2} & l_{3,2} & l_{4,2} & \ldots & l_{\mathrm{n}, 2} \\
0 & 0 & l_{2,2} & l_{4,2} & \ldots & l_{\mathrm{n}, 2} \\
0 & 0 & 0 & I_{4,4} & \ldots & l_{\mathrm{n}, 4} \\
0 & 0 & 0 & 0 & \ldots & l_{n, \mathrm{r}}
\end{array}\right)
\end{aligned}
$$

The solution \mathbf{X} to the linear system $\mathbf{N X}=\mathbf{B}$, is found in three steps:

1. Construct the matrices \mathbf{L} and $\mathbf{U}=\mathbf{L}^{\mathrm{T}}$, if possible.
2. Solve $\mathbf{L Y}=\mathbf{B}$ for \mathbf{Y} using forward substitution.
3. Solve $\mathbf{U X}=\mathbf{Y}$ for \mathbf{X} using back substitution.

Example 1 (A case-study):

Find the $\mathbf{A}=\mathbf{L} \mathbf{U}$ factorization for the matrix

$$
\boldsymbol{\mu}=\left(\begin{array}{lllll}
2 & 1 & 1 & 3 & 2 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 9 & 1 & 5 \\
3 & 1 & 1 & 7 & 1 \\
2 & 1 & 5 & 1 & 8
\end{array}\right)
$$

Use the Cholesky method.

Solution 1.

Enter the matrix.
$\boldsymbol{A}=\left(\begin{array}{lllll}2 & 1 & 1 & 3 & 2 \\ 1 & 2 & 2 & 1 & 1 \\ 1 & 2 & 9 & 1 & 5 \\ 3 & 1 & 1 & 7 & 1 \\ 2 & 1 & 5 & 1 & 8\end{array}\right) ;$

Invoke the subroutine Cholesky.
Cholesky[5]:
Print["L = ", MatrixFonm[L]];
Print["U = ", MatrixForm[U]];
Print["The Cholesky factorization"];
Print [MatrixForm[A], " = ", MatrixForm[L], MatrixForm[U]];
$L=\left(\begin{array}{ccccc}\sqrt{2} & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{2}} & \sqrt{\frac{2}{2}} & 0 & 0 & 0 \\ \frac{1}{\sqrt{2}} & \sqrt{\frac{2}{2}} & \sqrt{7} & 0 & 0 \\ \frac{2}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & 0 & \sqrt{\frac{7}{2}} & 0 \\ \sqrt{2} & 0 & \frac{4}{\sqrt{7}} & -2 \sqrt{\frac{2}{7}} & \sqrt{2}\end{array}\right)$
$\mathrm{U}=\left(\begin{array}{ccccc}\sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{3}{\sqrt{2}} & \sqrt{2} \\ 0 & \sqrt{\frac{2}{2}} & \sqrt{\frac{3}{4}} & -\frac{1}{\sqrt{6}} & 0 \\ 0 & 0 & \sqrt{7} & 0 & \frac{4}{\sqrt{7}} \\ 0 & 0 & 0 & \sqrt{\frac{7}{3}} & -2 \sqrt{\frac{3}{7}} \\ 0 & 0 & 0 & 0 & \sqrt{2}\end{array}\right)$
The Cholesky factorization

$$
\left(\begin{array}{lllll}
2 & 1 & 1 & 3 & 2 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 9 & 1 & 5 \\
3 & 1 & 1 & 7 & 1 \\
2 & 1 & 5 & 1 & 8
\end{array}\right)=\left(\begin{array}{ccccc}
\sqrt{2} & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} & \sqrt{7} & 0 & 0 \\
\frac{3}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & 0 & \sqrt{\frac{7}{2}} & 0 \\
\sqrt{2} & 0 & \frac{4}{\sqrt{7}} & -2 & \sqrt{\frac{2}{7}} \\
\sqrt{2}
\end{array}\right)\left(\begin{array}{ccccc}
\sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{3}{\sqrt{2}} & \sqrt{2} \\
0 & \sqrt{\frac{2}{2}} & \sqrt{\frac{2}{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & \sqrt{7} & 0 & \frac{4}{\sqrt{7}} \\
0 & 0 & 0 & \sqrt{\frac{7}{2}} & -2 \sqrt{\frac{2}{7}} \\
0 & 0 & 0 & 0 & \sqrt{2}
\end{array}\right)
$$

Verify the factorization.
Print["The Cholesk factorization"];

Print [MatrixForm[\mathbb{A}], " = ", MatrixForm[L.U]];
Print["Does A = L U ?"];
Print [A = L L U];

The Cholesk factorization

$$
\begin{aligned}
& \left(\begin{array}{lllll}
2 & 1 & 1 & 3 & 2 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 9 & 1 & 5 \\
3 & 1 & 1 & 7 & 1 \\
2 & 1 & 5 & 1 & 8
\end{array}\right)=\left(\begin{array}{ccccc}
\sqrt{2} & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & \sqrt{\frac{3}{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & \sqrt{\frac{2}{2}} & \sqrt{7} & 0 & 0 \\
\frac{3}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & 0 & \sqrt{\frac{7}{2}} & 0 \\
\sqrt{2} & 0 & \frac{4}{\sqrt{7}} & -2 & \sqrt{\frac{3}{7}} \\
\sqrt{2}
\end{array}\right)\left(\begin{array}{ccccc}
\sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{2}} & \sqrt{2} \\
0 & \sqrt{\frac{2}{2}} & \sqrt{\frac{3}{2}} & -\frac{1}{\sqrt{6}} & 0 \\
0 & 0 & \sqrt{7} & 0 & \frac{4}{\sqrt{2}} \\
0 & 0 & 0 & \sqrt{\frac{7}{3}} & -2 \\
0 & 0 & 0 & 0 & \sqrt{\frac{2}{2}}
\end{array}\right) \\
& \left(\begin{array}{lllll}
2 & 1 & 1 & 3 & 2 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 9 & 1 & 5 \\
3 & 1 & 1 & 7 & 1 \\
2 & 1 & 5 & 1 & 8
\end{array}\right)=\left(\begin{array}{ccccc}
2 & 1 & 1 & 3 & 2 \\
1 & 2 & 2 & 1 & 1 \\
1 & 2 & 9 & 1 & 5 \\
3 & 1 & 1 & 7 & 1 \\
2 & 1 & 5 & 1 & 8
\end{array}\right)
\end{aligned}
$$

Does $\mathrm{A}=\mathrm{L} \mathrm{U}$?

True

This time the elements on the diagonals of L and U are the same.
Remark.
The Cholesky method is used only when \mathbf{A} is a real, symmetric and positive definite matrix.

