DEPARTMENT OF CIVIL ENGINEERING - KFUPM
Numerical and Statistical Methods in Civil Engineering
CE 318-51-2011-2012 (111)

Computer Lab. Sessions NO. 05 \& 06

Subj.: Using Fortran IMSL subroutine and Mathematica software to perform numerical inegrations DATE: Oct. 17,'11
Objective: mainly to perform numerical integration using: i) IMSL Fortran subroutine; and ii) Mathematica software ${ }^{\ominus}$.

1. Use the Mathematica software to perform numerical integration of the following functions.

$$
f(x)=x \cos x \quad \text { for inegral limits } x_{l}=1 \text { and } x_{u}=4
$$

Compare the numerical results with exact solution using integartion by parts formula (i.e. $\int u \mathrm{~d} v=v u-\int v \mathrm{~d} u$).
2. Use the attached Fortarn program and subroutine to evaluate the integrals of the following functions using: two sampling points, three sampling points, and four sampling points for the Gauss-quadrature. Study the improvement of results and compare the errors in each case.

$$
\begin{aligned}
& I_{1}=\int_{1}^{4} x \cos x d x \\
& I_{2}=\int_{-2}^{2} \frac{d x}{1+x^{2}} \\
& I_{3}=\int_{0}^{1} x \exp \left(-3 x^{2}\right) d x
\end{aligned}
$$

Note: In the program provided A and B are the limits of integration; NGP= the number of Gauss points; NR= number of applications of the rule of integration.

The complete Fortran file (including the Driver program, the Function, and the IntegrationSubroutine):

```
C PROGRAM REPEATED GAUSS-LEGENDRE RULE
C ALTER NEXT LINE TO CHANGE PROBLEM SIZE
        PARAMETER (ISAMP=7)
        REAL SAMP (ISAMP,2)
        OPEN (UNIT=5, FILE='INPUTDATA.OUT')
        OPEN (UNIT=6,FILE='OUTPUT .OUT')
        READ (5,*)A, B,NGP
        CALL GAULEG (SAMP, ISAMP,NGP)
        HR=(B-A)/2
        AREA=0
        CR=A+HR
        DO 10 J=1,NGP
        X=SAMP (J,2)
        W=SAMP (J,1)
        XS=CR+X*HR
        10 AREA=AREA+W* HR** (XS)
        WRITE (6,*) ('****** REPEATED GAUSS-LEGENDRE RULE ******')
        WRITE (6,100)A,B
        WRITE (6,101)NGP
        WRITE (6,103) AREA
    100 FORMAT(/,'LIMITS OF INTEGRATION ',2F12.4)
    101 FORMAT ('NUMBER OF GAUSS POINTS PER SIRIP ',I7)
    103 FORMAT ('COMPUTED RESULT (AREA) ',F12.4)
        STOP
        END
        FUNCTION F (X)
C THIS FUNCTION PROVIDES THE VALUE OF F(X)
C AND WILL VARY FROM ONE PROPLEM TO THE NEXT
        F=1/(1+X**2)
        RETURN
        END
        SUBROUTINE GAULEG(SAMP,ISAMP,NGP)
C WEIGHTS AND SAMPLING POINTS
C FOR GAUSS-LAGUERRE QUADRATURE
        REAL SAMP (ISAMP,*)
        GO TO (1, 2, 3,4,5),NGP
    1 SAMP (1,1)=1
        SAMP}(1,2)=
        GO TO 100
    2 SAMP (1,1)=1.0
        SAMP (2,1)=1.0
        SAMP (1,2)=-0.577350269
        SAMP (2,2)=0.577350269
        GO TO 100
        3 SAMP (1,1)=0.5555556
        SAMP (2,1)=0.8888889
        SAMP (3,1)=0.5555556
        SAMP (1,2)=-0.774596669
        SAMP (2,2)=0.0
        SAMP (3,2) =0.774596669
        GO TO 100
        4 SAMP (1,1)=0.3478548
        SAMP (2,1)=0.6521452
        SAMP (3,1)=0.6521452
        SAMP (4,1)=0.3478548
        SAMP (1,2)=-0.861136312
        SAMP (2,2) =-0.339981044
        SAMP (3,2)=0.339981044
        SAMP (4,2)=0.861136312
        GO TO 100
    5 SAMP (1,1)=0.2369269
        SAMP (2,1) =0.4786287
        SAMP (3,1)=0.5688889
        SAMP (4,1)=0.4786287
        SAMP (5,1)=0.2369269
        SAMP (1,2)=-0.906179846
        SAMP (2,2) =-0.538469310
        SAMP (3,2)=0.0
        SAMP (4,2)=0.538469310
        SAMP (5,2)=0.906179846
    100 CONTINUE
        RETURN
        END
```

Background on "Gauss-Legendre Quadrature:
To approximate the integral

$$
\int_{-1}^{1} f[x] d x \approx \sum_{h=1}^{N} w_{\pi, k} f\left[x_{n, k}\right]
$$

by sampling $\mathrm{f}_{[\mathrm{x}]}$ at the n unequally spaced abscissas $\mathrm{x}_{\mathrm{n}, 1,1,} \mathrm{x}_{\mathrm{n}, 2}, \ldots, \mathrm{x}_{\mathrm{n}, \mathrm{\pi}}$, where the corresponding weights are $\mathrm{w}_{\mathrm{T}_{1}, 1}, \mathrm{w}_{\mathrm{N}, i}, \ldots, \mathrm{w}_{\mathrm{N}, \mathrm{N}}$. The abscissas and weights are obtained from a table of values. The method is attributed to Johann Carl Friedrich Gauss (1777-1855) and Adrien-Marie Legendre (1752-1833).

Example 1:

Use the Gauss-Legendre quadrature rules for $\boldsymbol{n}=\mathbf{2 , 3}$, and $\mathbf{4}$ points to compute numerical approximations for

$$
\mathrm{I}=\quad \int_{-1}^{1} \mathbb{E}^{-x^{2} / 2} d \mathrm{dx}
$$

Solution 1:

First, enter the formula $\operatorname{Exp}\left[\frac{-\mathrm{x}^{2}}{2}\right]$ or $\mathbb{E}^{-x^{2} / 2}$ or $\mathbb{E}^{-x^{2} / 2}$.

```
f[x_] = e ex
Print["f[x] = ", f[x] ];
```

$f[\mathrm{X}]=\mathrm{E}^{-\frac{x^{2}}{\varepsilon}}$

Solution using Gauss-Legendre quadrature with $\mathbf{n}=2$:

```
W1=1.0;
W2 = 1.0;
x1 = - 0. 577350269189625;
x2 = 0.577350269189625;
02=w1f[x1] + w2 f[x2]
```

1.69296

Solution using Gauss-Legendre quadrature with $\mathbf{n}=3$:

```
W1 = 0.555555555555556 ;
w2 = 0.88888888888884889 ;
w3 = 0.555555555555556 ;
x1 = - 0. 774596669241483;
x2 = 0.0;
x3 = 0.774596669241483;
03 = w1 f[x1] + w2 f[x2] + w3 f[x3]
```

1.71202

Solution using Gauss-Legendre quadrature with $\mathbf{n}=4$:
$\mathbf{w 1}=0.347854845137453$;
$\mathrm{w} 2=0.652145154862546$;
$\mathrm{w} 3=0.652145154862546$;
$\mathrm{W} 4=0.3478 .54845137453$;
$\mathrm{x} 1=-0.861136311594053$;
$\mathrm{x} 2=-0.339981043584856$;
$x 3=0.339981043584856$;
$\mathbf{x 4}=0.861136311594053$;
$\mathbf{Q 4}=\mathrm{w} 1 \mathrm{f}[\mathrm{x} 1]+\mathrm{w} 2 \mathrm{f}[\mathrm{x} 2]+\mathrm{w} 3 \mathrm{f}[\mathrm{x} 3]+\mathrm{w} 4 \mathrm{f}[\mathrm{x} 4]$
1.71122
line1 $=$ Graphics [\{Line $[\{\{-1,0\},\{-1, f[-1]\}\}]\}$;
line2 = Graphics [\{Line[\{\{1, 0\}, \{1, f[1] \}\}]\}];
Heeds ["Graphics`Colors`"];
Heeds ["Graphics 「FilledPlot`"];
graph $=$ Plot $[f[x],\{x,-1,1\}$,
PlotRange $\rightarrow\{(-1.1,1.1\},\{0,1.1\})]$:
gri $=$ FilledPlot $\left[\{f[x]\},\left\{x_{r}-1,1\right\}\right.$,
Fills \rightarrow \{ $\{\{1$, Axis $\}$, Cyan $\}\}]$;
Show[graph, gri, line1, line2];
Print ["The area under $\mathbf{Y}=$ ", f[x]];
Print["is approximately ", 04];

The area under $y=\mathbb{E}^{-\frac{x^{2}}{i}}$
is approximately 1.71122

More Background [Numerical Integration [CE 318]/Extra Notes

The shifted Gauss-Legendre rule for [a,b]. To approximate the integral $\int_{a}^{b} f[t] d t$ use the change of variable ${ }^{t=\frac{a+b}{2}+\frac{b-a}{2} x \text { and } d t=\frac{b-a}{2} d x}$. Then use ${ }^{g[x]=f\left[\frac{a+b}{2}+\frac{b-a}{2} x\right]}$ and apply the Gauss-Legendre rules for $\frac{\mathrm{b}-\mathrm{a}}{2} \int_{-1}^{1} \mathrm{~g}[\mathrm{x}] \mathrm{dlx}$.

Exercise 3: Use the shifted Gauss-Legendre rules for $\mathrm{n}=3$ points to approximate the integrals
Illustrate the comparisons for the integral $\int_{0}^{1} \mathbb{E}^{-x^{2} / 2} d x, \int_{1}^{2} \mathbb{E}^{-x^{2} / 2} d l x$ and $\int_{i}^{3} \mathbb{E}^{-x^{2} / 2} d d x$.
Solution. Enter the abscissas and weights. Copy them from Exercise 1 and make sure they are activated!

```
W1 = 0.5555555555555556;
w2 = 0.88888888888888889;
W3= 0.555555555555556;
x1 = -0.774596669241483 ;
x2 = 0.0;
x3= 0.774596669241483;
```

Exercise 3 (a: Find the integral over [0,1]
$\mathrm{a}=0$;
b $=1$;
$g\left[x_{-}\right]=f\left[\frac{a+b}{2}+\frac{b-a}{2} x\right]$;
$03=\frac{b-a}{2}\left(\mathrm{w} 1 \mathrm{~g}[\mathrm{x} 1]+\mathrm{w} 2 \mathrm{~g}[\mathrm{x} 2]+\mathrm{w} 3 \mathrm{~g}\left[\mathrm{x}^{3}\right]\right)$
0.855626

Compare with Mathematica's calculation.
$\boldsymbol{v 1}=$ HIntegrate $[\mathbf{f}[x],\{x, a, b\}]$
v1-03
0.855624
-2.00215×10^{-6}
Exercise 3 (b): Find the integral over [1,2]
$\mathrm{a}=1$;
b=2;
$g\left[x_{-}\right]=f\left[\frac{a+b}{2}+\frac{b-a}{2} x\right]$;
$03=\frac{b-a}{2}\left(\mathrm{w} 1 \mathrm{~g}[\mathrm{x} 1]+\mathrm{w} 2 \mathrm{~g}[\mathrm{x} 2]+\mathrm{w} 3 \mathrm{~g}\left[\mathrm{x}^{3}\right]\right)$
0.34066

Compare with Mathematica's calculation.

```
v2 \(=\) HIntegrate \(\left[f[x],\left\{x, a_{r} b\right\}\right]\)
v2-03
```

0.340664
3.40802×10^{-6}

Exercise 3 (c):

Find the integral over $[2,3]$

$$
\begin{aligned}
& a=2 ; \\
& b=3 ;
\end{aligned}
$$

$$
\mathrm{g}\left[\mathrm{x}_{-}\right]=\mathrm{f}\left[\frac{\mathrm{a}+\mathrm{b}}{2}+\frac{\mathrm{b}-\mathrm{a}}{2} \mathrm{x}\right] ;
$$

$$
03=\frac{\mathrm{m}-\mathrm{a}}{2}(\mathrm{w} 1 \mathrm{~g}[\mathrm{x} 1]+\mathrm{w} 2 \mathrm{~g}[\mathrm{x} 2]+\mathrm{w} 3 \mathrm{~g}[\mathrm{x} 3])
$$

$$
0.0 .53644
$$

Compare with Mathematica's calculation.

```
v3 = HIntegrate[f[x],{x, a, b}]
v3-03
0.0.536424
-1.58428\times10-6
```

What famous numbers do you recognize in the following list ?

$$
\begin{aligned}
& \mathbf{H}\left[\frac{\mathbf{1}}{\sqrt{2 \pi}}\{\mathbf{v} 1, \mathbf{v} 2, \mathbf{v} 3\}\right] \\
& \{0.341345,0.135905,0.0214002\}
\end{aligned}
$$

Or perhaps the following list ?

$$
\begin{aligned}
& \mathbf{H}\left[\frac{\mathbf{1}}{\sqrt{2 \pi}}\{\boldsymbol{r} \mathbf{1}, \boldsymbol{r} 2+\boldsymbol{r} \mathbf{1}, \boldsymbol{r} 3+\boldsymbol{r} \mathbf{1}+\boldsymbol{r} 2\}\right] \\
& \{0.341345,0.47725,0.49865\}
\end{aligned}
$$

$$
g\left[x_{-}\right]=\frac{1}{\sqrt{2 \pi}} \mathbf{f}[x] ;
$$

$$
\text { line } 0=\text { Graphics }[\{\text { Line }[\{\{0,0\},\{0, \operatorname{g}[0]\}\}]\}] \text {; }
$$

$$
\text { line1 = Graphics }[\{\text { Line }[\{\{1,0\},\{1, \mathrm{~g}[1]\}\}]\}] \text {; }
$$

$$
\text { line2 }=\operatorname{Graphics}[\{\operatorname{Line}[\{\{2,0\},\{2, \mathrm{~g}[2]\}\}]\}] \text {; }
$$

$$
\operatorname{gr} 0=P \operatorname{lot}[g[x],\{x,-3,0\},
$$

$$
\text { PlotRange } \rightarrow\{\{-3.1,3.1\},\{0,0.4\}\}] \text {; }
$$

gri $=$ FilledPlot $[\{g[x]\},\{x, 0,1\}$,
Fills $\rightarrow\{\{\{1$, Axis $\}$, Green $\}\}$;
gr2 $=$ FilledPlot $[\{g[x]\},\{x, 1,2\}$,
Fills $\rightarrow\{\{\{1$, Axis $\}$, Orange $\}\}]$;
gr $3=$ FilledPlot $[\{g[x]\},\{x, 2,3\}$,
Fills $\rightarrow\{\{\{1$, Axis $\}$, Cyan $\}\}]$;
Show[gro, gris, griz gr3, line0, line1, line2];

Exercise 4: Investigate the truncation error bound formulas for the Gauss-Legendre quadrature rules of $n=2,3$, and 4 points.
Use the integral $\int_{-1}^{-1} \mathbb{1}^{-x^{2} / 2} d x$ for the investigation
Solution. Use the quadrature values obtained in Exercise 1.
$\mathrm{Q} 2=1.69296344978122892$
Q3 $=1.71202024520190976$
$\mathrm{Q} 4=1.71122450459948849$
And use the "true" numerical value of the integral as found in Exercise 2 $\mathrm{v}=1.711248783784294$

Use symbolic differentiation, and a graph to determine the bound ${ }^{M 4=}=\max _{-1=x=1}\left|f^{(4)}[\mathrm{x}]\right|$.
f4[x _] = Expand $[\operatorname{D}[f[x],\{x, 4\}]]$;
$\operatorname{M4}=\operatorname{Max}[\{\operatorname{Abs}[f 4[-1]]$, Abs [f4[0]], Abs [f4[1]] $\}]$;
Plot $[f 4[x],\{x,-1,1\}$, PlotStyle \rightarrow Red $]$;

Print["M4 = ", M4];

$$
\begin{aligned}
& f^{\prime} \cdot '^{\prime}[x]=3 E^{-\frac{x^{2}}{2}}-6 E^{-\frac{x^{2}}{2}} x^{2}+E^{-\frac{x^{2}}{2}} x^{4} \\
& M 4=3
\end{aligned}
$$

Use symbolic differentiation, and a graph to determine the bound ${ }^{\mathrm{M} 6}=\max _{-1=\times 1}\left|f^{(6)}[\mathrm{x}]\right|$.

```
f6[x_] = Expand[D[f[x],{x,6}]];
Plot[f6[x], {x, -1, 1}, PlotStyle }->\mathrm{ Blue];
M6 = Max[{Hbs[f6[-1]], Ahs[f6[0]], Hbs[f6[1]]}];
Print["fl'''''[x] = ", f6[x] ];
Print["M6 = " , M6 ];
```


$$
\begin{aligned}
& -15 E^{-\frac{x^{2}}{2}} x^{4}+E^{-\frac{x^{2}}{2}} x^{6}
\end{aligned}
$$

$M 6=15$


```
f8[x_] = Expand[ D[f[x], {x,8}]];
Plot[f8[x], {x,-1, 1}, PlotStyle }->\mathrm{ Green]:
```



```
Print["M8 = ", M8 ];
```


 $+210 \mathrm{E}^{-\frac{x^{2}}{2}} x^{4}-28 \mathrm{E}^{-\frac{x^{2}}{2}} \mathrm{X}^{6}+\mathrm{E}^{-\frac{x^{2}}{2}} \mathrm{X}^{3}$
$M B=105$
Now compare the actual error and error bounds for the quadrature rules.
For $\mathbf{n}=2,\left|E_{i}(\mathbf{E})\right| \leq \frac{M 4}{13.5}$.
$\mathbf{E Q 2}=\mathbf{y}-\mathbf{Q} 2$
$\mathrm{EB} 2=\frac{\mathrm{M4}}{135 .}$
0.0162653
0.0222222

For $\mathbf{n}=3,\left|E_{3}(\mathrm{f})\right| \leq \frac{\mathrm{M6}}{15750}$.
E03 $=\mathbf{y}-03$
$E B 3=\frac{\mathrm{M} 6}{15750}$.
-0.000771461
0.000952381

Forn $=4,\left|E_{4}(f)\right| \Xi \frac{M 8}{3472875}$.
$\mathbf{E D 4}=\mathbf{v}-\mathbf{0 4}$
$E B 4=\frac{M 8}{3472875}$.
0.0000242792
0.0000302343

Procedure for Lab.-Report Evaluation:

1. Start working in the assigned session, then complete your computer works preferably within the session or shortly afterwards using the same computing machine on which you may save your work for future use (if necessary)
2. Submit for evaluation your summary of organized computer work assignment in the beginning of the next lab.
3. Your report should include: i)Introduction expalining the work undertaken and its main objectives; ii) Clear outline of the numerical procedure(s) used; iii) Print-out of the work completed; and iv) Summary and conclusions.
