بسم الإلا الرحم
 DEPARTMENT OF CIVIL ENGINEERING - KFUPM

Numerical and Statistical Methods in Civil Engineering

CE 318-1,'11
Assignment No. 05
Subjects: Finite Differences Solution of Ordinary and Partial Differential Equations (ODE \& PDE)
Date: Date: Dec. 06, ‘11

1. Study some basics on theory and analytical solution of column instability (bucking) as presented in the textbook pages 762-765. Then, for a uniform column AB with one end pinned and with the other end having a rollersupport (as shown in Fig. P-1), determine values of the critical axial load $\mathrm{P}_{\text {cr }}$ for a column with $\mathrm{L}=3 \mathrm{~m}, \mathrm{E}=10 \mathrm{GPa}$, and $\mathrm{I}=1.3 \times 10^{-5} \mathrm{~m}^{4}$. For this:
a. determine the analytical (exact) value of P_{cr};
b. determine an approximate (numerical) value of $\mathrm{P}_{\text {cr }}$ using the method of finite differences with nodal spacing ration $\lambda_{1}=1 / 3$ and $\lambda_{2}=1 / 4$ such that $\mathrm{L}_{\mathrm{s}}=\lambda \mathrm{L}$; and
c. compare the results with different λ and with the analytical solution.
2. Use the method of finite difference to formulate the system of linear equations to solve problem 27.23 of the textbook page 780 . Then i) determine the nodal values $u\left(x_{\mathrm{i}}\right)=u_{\mathrm{i}}$, and ii) plot u_{i} versus X_{i}.

Fig. P-1: mesh discretization of the column.

B.C.'s: transverse displacements at A and B are both zero.
3. The square cross section shown below) is subjected to a torque T. The stress function ϕ can be used to determine the stress at points on the cross section. The governing differential partial differential equation (type is Poisson's Equation) is given as
$\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+2=0$
B.C.'s :
$\phi=0$ at all boundary points of the cross section. Note: Assume the dimension of the cross section is 8 cm .

Complete the numbering scheme on the cross section, determine the values of ϕ at all nine interior points (numbered as: $1,2,3,4,5$ "the center point") on the cross section.

8 cm

