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Structural Mechanics I

CE 203-KFUPM-021

Summary of lecture 34-37                

· Stresses in Thin-walled Pressure Vessels 

· Compound Normal and Shear Stresses.


Stresses in Thin-walled Pressure Vessels:
Pressure Vessels: carry internal pressure pint, and resist by developing stresses in the thickness t of the vessel. Thin-walled vessels usually have thickness to radius ratio t/r much less than 10 otherwise it is called a thick-walled pressure vessel. We study here only thin-walled vessels. 

Types of Vessels: Cylinderical and spherical vessels. Each has an internal radius r, and wall thickness t, as shown in the following two Figures.

Resistance: the vessel resists the effect of internal pressure pint by developing circumferential (hoop) stress h and longitudinal stress l.

Computing Hoop and Longitudinal Stresses:

· Cylinderical vessel: using section 1, the principle of equilibrium between internal force effect Fint, and the resistance developed in the wall thickness R gives:

R = Fint  ===> p r2 = l re2 – ri2] = l re – ri] re + ri]


                   = l t] [2r] ===> l  = [r/(2t)] p.

And from the section 2:

R = Fint  ===> p l (2r) = h (2 lt] = h l t

                   ===> h  = [r/(t)] p.

Note: h  = 2 l . This means that the hoop stress is more damaging than the longitudinal stress.

· Spherical vessel: using section 1, the principle of equilibrium between internal force effect Fint, and the resistance developed in the wall thickness R, it is easily seen that 

R = Fint  ===> p r2 = l re2 – ri2] = l re – ri] re + ri]


                   = l t] [2r] ===> l  = [r/(2t)] p.

This value is independent of the cut and is easily seen that h  = l for spherical vessels.

Note: The stresses in spherical vessels are much less than in cylinderical vessels. Therefore from a design point of view (that is: selecting appropriate material), spherical vessels should be used to save material for more economical design.

The following example illustrates the applications of the above equations for a typical pressure vessel.

Example: A cylinderical pressure vessel is to be made from a set of wooden pieces shaped together to form a cylinder with internal radius r. A set of steel belts are also used to ensure the integrity of the cylinder under internal pressure as shown in Fig. P-1 below. If the information for the problem are: 

· pint = 294 kPa
· r = 1.5 m
· Abelt = 300 mm2
· all   = 100 MPa
· Spacing between belts (unknown) s.
Determine the required spacing of the belts.


Fig. P-1:


From equilibrium offered by the resistance of one belt (see the FBD above):

Fint = R; then: p (s)(2r) = 2*all (Abelt)

The spacing s = all (Abelt) / (p r)


          =  100.E06 (300.E-06)/[ 294.E03 (1.5)] = 0.0680 m

Conclusion: 

A proper design will indicate the use of the indicated belts at spacing of not more than 7 cm measured from center to center of each two consecutive belts.   

Compound Normal and Shear Stresses:

For a general state of loading there are usually three internal forces (N; Vy; Vz) and three internal moments (Mx = Torsion moment T; My = Bending moment about y-axis; Mz = Bending moment about z-axis that might act on a particular cross section. Each one of theses six internal actions will give a stress of its type to be either normal stress or shear stress The following Fig. 1 illustrates the forces and the stresses in a given point on a given cross section.


Fig. 1:

Based on the above illustration, the total stress at a point on the cross section defined by coordinate (yp; zp), the total (compont) normal and shear stresses at the point p are computed by linaer superposition from the effects of the individual actions as follows:

· Compound normal stress p =  p (N) p (My)  +p(Mz)
                = N/A + My zp/ Iyy + Mz yp/ Izz.

· Compound shear stress p =  p (T)  p (Vy)  p(Vz)
= [Tr/J or T t/Jeq  depending on the type of c/s] + Vy Qzz/ Izz tzz + Vz Qyy/ Iyy tyy
Notes: 

1. The summation of p is done vectorially as the stresses from the given actions might not be collinear.

2. The moments of inertia Iyy and Izz are with respect to the centroidal axes.

3. The thicknesses tyy  and tzz are the dimensions for a rectangular c/s or the width of the appropriate cut made on the c/s.

Additional notes and clarifications are included in the following pages.

Applications:

The analysis of compound normal and shear stresses are illustrated by the following examples.
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Analysis of Compound Normal and Shear Stresses for a General State of Loading

The 3-D bar shown in the Fig. P-2, is loaded by three forces of 20 kN, 10 kN and 40 kN acting respectively at points A, B, and C. The bar has a rectangle cross section of 20 cm by 15 cm. The cross section at D is fixed to the footing and the three segments of the bar has lengths of 6 m, 4 m, and 5 m.

Determine:

1. All internal actions (forces and moments) at section D using vector equilibrium equations.

2. The maximum compound normal stress at c/s D.

3. The maximum compound shear stress at c/s D.
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Vector Equilibrium equations: 

Fext + Fint = 0; Mext. @ point D + Mint. @ point D = 0; 

F1 + F2 + F3 = 0; -20 j + 10 i – 40 k + FD = 0. Then: FD = - 10 i  + 20 j + 40 k  (kN).
Mext. @ point D + Mint. @ point D = 0;
(r1x F1) + (r2x F2) + (r3x F3) + MD = 0  … (2)
And with the origin of the (x,y,z) system at point D, the position vectors are:

r1 = 5 i+ 4j-6k (m)

r2 = 5 i+ 4j (m)

r3 = 5 i (m)

Then from equation (2) above, the moment MD is obtained from the sum of the negatives of the cross product of the position vectors ri and forces Fi.

MD =  - [(5 i+ 4j-6k) x (-20j) + (5 i+ 4j) x (10i) + (5 i) x (-40k)]

       = - [ (-100k + 0 – 120i)   + ( 0 - 40k) + (200j)].

Interpretations of FD and MD:

The components of the two vector internal actions (forces and moments) are as follows:

FDx = N = -10 kN  (Tension as it is in the –ve x-direction!! ).

FDy = Vy = 20 kN.

FDz = Vz = 40 kN.

MDx = Mx = T = + 120 kN.m.

MDy = - 200 kN.m.

MDz = +140 kN.m.

Internal Actions Placed on the C/S:

The normal stresses and shear stresses at c/s D will be caused by the compound effects of the above internal actions acting on the c/s at D. 
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·  Stress cube at point 2: with and
complete the computations of the numerical values of the compound stresses!
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tot =  Vy)  + (Vz) 


         b)(2a)2)]+ VyQzz/Izz tzz + 0. (@ level of  point 2)


where: Qzz = [0.15(0.10)*(0.10/2)] m3; and tzz = 0.15 m.





x





y





z





x






































The computations of max requires similar procedure of placing the actions T, Vy, and Vz on the c/s and determining the point that will include addition (at point 2) of component shear stresses.





corner 1





200 kN.m





140 kN.m





10 kN





FBD of center line of the bar ABCD with forces vectors  Fi and position vectors  ri.
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Fig. P-2:
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Coordinates of points:


A( 5, 4, -6) m.


B( 5, 4, 0) m.


C( 5, 0, 0) m.


D(0,0,0) m.
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    s.a.alghamdi   
                                                                                   January 7, 2005

