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Structural Mechanics I

CE  203-KFUPM-021

Summary of lecture 27-29                       The Flexure Formula & Bending Stresses in Beams


Definition:  Bending of a beam structure is a process by which the structure assumes a deformed shape due to compression or elongation of material points in the cross section. The bending action caused by the combined integral effect of loads [see for example Fig. 1 below].  

Fig. 1:
Beam segment with a positive bending moment.

.





The part of c/s above the z-axis ( centroidal axis C.A.) is under compressive stress c(y), and the part of c/s below the C.A. is under tensile stress t(y).

Bending Stresses in Symmetric Cross Sections:  It is assumed that if bending is about the z-axis the y-axis is an axis of symmetry.  In this work the cross section is assumed to have at least one axis of symmetry. The cross section is subjected to a positive bending moment M(x) and the segment dx of the beam will be bent with a radius of curvature as shown in Fig. 2.

By studying the (change in geometry) 

compression in the material points above the C.A.,

it seen that:

yl/l0

l0dx = dlf = (y) dl = lf –l0  = -y d

 Bending strains:  yl/l0 = -y / 
 Bending stress: For linear elastic material behavior yy)= - E (y / 
 Flexure Formula: relates M(x) to stress yacting on an area dA above the z-axis. The stress will give a compressive force dN =  (y) dA = - E (y / dA. The moment caused by dN = dMz = y dN and the total Mz = ∫ [- E (y / dA ] y = - (E / ∫ y2  dA = -E/ICA

But since: -E/ (y)/y; Then  the flexure formula is: yxyCA
Notes on the Flexure Formula:  For linear elastic materials  

1. The stress distribution along the depth of c/s is linear with maximum stresses at the top and bottom lines of the cross section.
2. The bending stress is zero on the C.A. if the net normal force acting on the c/s is zero.
3. If only a bending moment acting on the c/s, the z-axis will be a separation line between the part of c/s under compression and the part of the c/s under tension,
4. Integral effects of tensile stress t will a normal force T, and the integral effect of a compressive stress C will be a compressive force C. 
5.  If only a bending moment acting on the c/s, the normal forces T and C will be equal and opposite in direction: T – C =0.
Centroidal Moment of Inertia ICA:

1. For simple c/s use the integration formula ICA =  ∫ y2  dA.
2. For composite c/s ( made from simple rectangle areas) use the Parallel Axis theorem: ICA = e + e dey2 where dey is the distance from the C.G. of the whole area (Centroid)  to the local centroid of a single area designated by e.
3. It is necessary first to locate the Centroid of the whole area of the c/s measured from a convenient reference axis such that
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4. The moment of inertia for each rectangle single area with dimension of base B and height H is:  Ie = 1/12 B H3.
5. Units of ICA is in (length units)4 and ICA  is always a positive quantity for a positive area. But for some cross sections it might be more convenient to consider the net area (for example for a hollow c/s) as the sum of a positive area and a negative area that represents the hollow area.

Example problem: The following example and notes will illustrate the analysis of a typical beam structure. The example shows how the results of SFD are used to construct the BMD, and how the BMD is used to compute the bending stresses in a T-cross section with only one axis of symmetry (the y-axis).  The solution process illustrates the computation of the location of the centroid, the value ICA  is computed using the Parallel axis theorem, and the flexure formula is used to compute the tensile and compressive bending stresses max, and cmax, for both the maximum positive and negative bending moments.
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This leads to the required flexure equation: x(y)z(x) y/ ICA.
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Note: The bending stress is a normal stress in the x-direction. This stress is compressive at material points with +ve y if the moment applied is positive, and vice versa.
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Typical compressive stress block:    

This stress block has zero value at the level of the centroidal axis and a maximum 

compressive stress c at the top material points.

The compressive force C = volume of the stress block = [(c * hc)/2] * bc = Average stress* (bc*hC).

Then compressive force C = [(c+0)/2] * bchc. The same procure is used to determine the tensile force T.
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Design of Beams
The design process involves the determination of geometry parameters of a structure. For beams the design will imply determining the dimensions of a specified geometry of the cross section when the material characteristics are specified.
Starting from the flexure formula  yxyCAfor design purposes the equation can be written as 




y​maxxCA/ ymax

The ratio CA/ ymax  is written as S = CA/ ymax  or as  S = CA/ c  , then if the allowable stress of the material is known and the maximum bending moment is known the value of S can be computed as 




S = Mmax / all


… (1)
The S is design variable and is often called the section modulus. Once the S is known the required moment of inertia can be determined only after specifying the geometry of the cross section. The simplest (most often used) geometry is the rectangle cross section.

The design process is often iterative (repetitive) till the requirements of design are satisfied.

The main steps to design beams for bending requirements are:

1. For a given loading determine draw the Bending Moment Diagram (BMD) and determine Mmax.
2. Specify the type of material to be used and determine the allowable bending stress all based on the ultimate stress ult  and a selected factor of safety FS  (e.g.:  all  = ult/ FS). 
3. Determine the required cross section modulus S using equation (1) that will ensure that max  is NOT more than all. 

4. For standard cross section (including I-shaped, S-cross sections, Wide-flange cross sections), some design tables often tabulate the values of section modulus for each shape. The design will then only requires selecting a suitable economical shape (e.g.: WF-shape or I-shape) such that the selected cross section will ensure that

Sprovided  ≥ Srequired

… (2)

5. Then if inequality (2) above is satisfied, the beam stresses will also satisfy the following design requirements

max   ≤ all


… (3)



As the design process is often iterative (repetitive), the above steps might have to be repeated till the requirements of inequalities 1 and 2 above are satisfied and the cross section is economical to construct with minimum cost  (very often it is the cross section with minimum weight). 
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