1/5

Structural Mechanics I

CE  203-KFUPM-021

Summary of lecture 21                                                Torsion of Solid Non-circular Shafts 


Angular Deformations: The study of kinematics (geometry) of deformations leads to the relationships between angle of twist x) and shear strain (x).

The main difference between the deformations of circular shafts and non-circular shafts is the presence of axial deformations in non-circular shafts. The axial displacement function u(x) leads to axial strains x) and the function is termed Warping Function.

The warping effects on non-circular shafts are clarified by the deformed shape shown in Fig. 1 shown below for a shaft under pure torsion.  

The relationships between Tint to shear stress  and angle of twist per unit length ddx  for non-circular shafts are obtained from the mathematical theory of elasticity through the solution for  a stress function using differential equations.

The following notes will summarize the final results obtained from the theory of elasticity for the solution of the torsion problem for non-circular section.

Fig. 1:  Warping of a shaft with square cross section.

[image: image1.jpg]Notice the deformation that occurs to the square
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It was demonstrated in Sec. 5.1 that when a torque is applied {
having a circular cross section—that is, one that is axisymme
shear strains vary lincarly from zero at its center to a maximum a
surface. Furthermore, due to the uniformity of the shear strain at
on the same radius, the cross section does not deform, but rathe
plane after the shalt has twisted. Shafts that have a noncircular cro:
however, are nor axisymmetric, and because the shear stress over t
section is distributed in a very complex manncr, their cross sec
bulge or warp when the shalt is twisted. Evidence of this can be s
the way grid lines deform on a shaft having a square cross sect
the shaft is twisted, Fig. 5-27. As a consequence of this deform
torsional analysis of noncircular shafts becomes considerably cor
and will not be considered in this text.

Deformed
Fig. 5-27
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*5.11 €lastic Twisting of Solid Noncircular Sections.
The basic kinematic assumptions coumerated in Section 5-3 for the twisting
of shafls with ciscular cross sections are not valid for the twisting of shafts
with noncireular cross sections. In particular, transvcrsc cross sections warp
during twisting of shafts with sulid, noncircular cross sections. Warping
mcans that points that li in a plane perpendicular (o the axis of the shaft
Before twisting do_not lic in such a plane after twisting. Tn other words,
‘points in a transverse plane may cxperience displacements parallcl to the.
‘i of the shaft. This behavior has & profound cffect on the stress distribu-
tions for noncitcular cross sections.

= This scetion presents some formulas thas are useful in the calculation
of sheating stresses for solid, noncircular cross sections. The rigorous de-
velopment of the formulas presented here is beyond (he pedagogical scape
of this text. The interested reader is referred (0 an advanced text.*

Rectangular cross section. Analytical solutions have becn oblained
for the torsion of reclangular, clastic members of sides 2a and 2b as shown
in Figure 5-32. The components of shearing stress are given by formulas in
terms of infinite series. The mathematical treatment is beyond the scope of
this book. The analysis shows that shearing stresses at the corners are zero.
Note that the corners of a rectangular cross scction arc its most remote
jints. Accordingly, the stress is zero at the most remote point of the
Jar Gross scction. Recall that the stress was a maximum af the most
femote point for circular cfoss sections. This abscrvation cophasizes how
different the suress distributions are for these two cross sections. The maxi-
‘mum shearing stress for a rectangular cros section occurs at the midpoint
of the long side. It can be calculated analytically and the result expressed in
terms of an infinite seres.
‘The maximum shearing stress and the unit angle of twist are fre-
quently expressed in the forms

Lol

Figure 5-32

(5-60)

where 2a s the length of the short side of the rectangle and 2h is the length
of the long side. The coefficients « and 8 are deterrnined 0 that, when they
are substituted into Eq. (5-60), Ty and ddbdz coincide with VEIIES 7w
and ddidz calculated from the more advanced analyscs.
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Table of Coefficients for Rectangular Sections

Lo0 150 200 250 300 400 600 100

0208 0231 046 0256 0367 07K 029 0312 033
5 010 0496 029 0219 0263 031 029 0312 03

for @ and f for various values of aspect raio bla age isted in Table 5-1. For
b rectangles—tha i, for 26 much greater than 2a—a = B = VA

“Approximale formulas for the torsional shearing strsscs and angles
of twist for several noncircular cross sections are listed in Figure 5-33
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Figure 5-33
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Figure 5-35
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d of several long narrow rectangles

(5-62)

where J, is the value of J for the ith rectangular segmeat. This formulu cun
be used to caleulate the value of J for angles, channels, and wide flanges
and other scetions that are made up of narrow rectangles.

The corresponding approximalc angle of twist is

(5-63)

5-14

XAMPLE

Determine the mugaitude and location of the maximum shearing Stress in cach
Jeg of the alumimum angle scetion shown in Figure 5-35 when a 3-ft length is
subjected to twisting couples of 300K in.-Ib at its ends. Determiine the elative
fotation of the ends of this torsion member.

SCLUTION  This cross seetion cansists of wo narrow rectangles. An ap-
proximate value of polar moment of inertis is ebtained from Egs. (5-61) and (5~
62). Accordingly,

S 1 00 + 0025 = 01070’ o

he magaitude o the maximun shearing trss i each lg i gven by the second
formula in Egs. (5-61). Thus
som
= 20 05) = 7580 si
e
3000 )
D= 0R(0.25) = 390 psi
2 - 2029 - 30
s stesses occur at the midlengins of the horizoncal and vertcal Jegs of the
ection.
e et routon of the ends o the b i cbrained trough the vse of
Eq. (5-63). Accordingly,

3000460)

e 10y = 027 @
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andare functions of  cross section aspect ratio b/a
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