King Jahd University for Petroleum & Alinerals Department of Civil and Environmental Engineering 2015-2016 [151] CE 318 - 1 Numerical and Statistical Methods in Civil Engineering Assignment NO 2

Subjects: Interpolations and Curve Fitting

DUE DATE: Sept. 29, '15

- **1.** Use *quadratic interpolation* to estimate *logarithm of* 7.5 *to base* 10 [i.e.: *log*₁₀7.5], *then*
 - (a) interpolate between log 7 and log 8;
 - (b) interpolate between log 7.2 and log 7.8;
 - (c) compute *per cent relative* error ε_t for the results in (*a*) and (*b*) *relative to the true value*.
 - (d) plot (using *Excel*) and compare the *interpolating*-function versus the exact *log*-function within the range from 5 to 8.
 - (e) Comment on the suitability of the interpolating function.
- 2. Solve items *a*, *b*, and *c* of problem 18.12 (textbook page 522) and compare the per cent *relative* errors.
- **3.** Solve problem 18.13 (textbook page 522).
- 4. Develop the *cubic spline* for the following given three data points:

x	1.	2.5	4.0
f(x)	-2.5	5.5	7.5

Then use the derived *spline to:* (a) predict f(2.5); (b) verify the value of f(3).

5. Use *least-squares regression* to fit a straight line to the following data:

x	1	2	4	6	3	5	7	9
у	-1	3.5	5.7	2.1	8.1	3.2	5.5	-5

Then use the *linear fit* to:

- (*a*) determine slope and intercept;
- (b) determine the standard error; and
- (c) compare the *linear-fit* to the plot of data.