<u>Analysis of Plane State of Stress Using Mohr's Circle Method</u>

The method is a fast graphical procedure to determine the state of stress on a given plane passing through a stressed-material point. It is particularly noted that:

- 1. All angles on the circle are twice the real angles.
- 2. Every point (of the ∞ number of points on the perimeter of the circle represents the state of stress on an inclined plane at the point under-stress.
- 3. To enter the circle use 2θ and to obtain an angle from the circle divide the angle by 2.

Use the above points to analyze the following state of compound stresses (at a point) and to determine the state of stress on an element inclined with angle θ = 10 degrees counter-clockwise from x-axis.

Solution: Given that σ_x = 40 MPa; σ_y = 40 MPa; τ_x = - 40 MPa, the circle center and radius are C

(σ_{avg} ; 0) at (35, 0) MPa, and r = R = $\sqrt{(\frac{\sigma_x - \sigma_y}{2})^2 + \tau_{xy}^2} = 5\sqrt{2}$ MPa (\cong 7.1 MPa).

Angle AOB =
$$\sin^{-1}(5/7.1) = 44.8 \circ$$
.

The given angle $\theta = 10^{\circ}$ is shown on the circle as point C with (σ^* ; τ^*) yet to be determined from analysis of geometry of angle given noting that angle COA is 20°. Therefore since angle COB is = 64.8°, the height CD of triangle COD gives shear stress τ^* , and the base OD of the triangle is added to σ_{avg} to give σ^* .

The values are: $\sigma^* = 35 + R \cos 64.8^\circ = 38.02$ MPa; and $\tau^* = R \sin 64.8^\circ = 6.42$ MPa (-ve).

Its noted that on the circle the angle between points A and E is 180° and the real angle is only 90° . Therefore the stresses at point E are for a plane normal to the plane of point A. **The same note applies to the two planes for points C and F.** It is also noted that due to symmetry **OG = OD**, and this makes the determination for state of stress on the plane for point F straightforward with the values as (σ^{**} = 35 - R cos 64.8° \cong 32.0 MPa; τ^{**} = + 6.42 MPa).

The properly oriented element for points C and F is given below showing the angle θ = 10°.

Quiz 8: Compute the maximum shear stresses and show them on a properly oriented element.

CE 203 Structural Mechanics I CE_KFUPM (s_a_alghamdi_2013)

Further Note:

1. Mohr's circle is used to determine the extreme-values of stresses resulting from applied loads to any structure for specified loading conditions. So if service loads are applied to a given structure, the resulting extreme values of stresses (namely: tensile; compressive or shear) and for a specified level of structural safety using Factor of Safety (**FS** > 1.0), the required strengths (tensile; compressive and shear strength) are easily determined from the extreme values obtained from Mohr's Circle as follows:

Required Strength S_r for a material is: S_r = FS x Extreme Stress Value from Mohr's Circle