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Abstract: [To be prepared after the whole paper is finished]
1. Introduction 

The applications of meshless methods in computational mechanics have attracted much attention in recent years. These methods do not require mesh generation which is considered to be the most time-consuming part of a finite element formulation particularly in problems associated with frequent re-meshing. Although, the initial idea of mesh-less methods dates back to the smooth particle hydrodynamics (SPH) method by Gingold in 1977 [3], the research into mesh-less methods has not become active until the development of the diffuse element method by Nayroles et al. [4]. Since then, several mesh-less methods have been reported in the literature, such as the element-free Galerkin (EFG) method [5-10], the reproducing kernel particle (RKP) method [11], the hp clouds method [12], the mesh-less local Petrov-Galerkin (MLPG) method [13], the mesh-less local boundary integral equation (MLBIE) method [14], the method of collocation with radial basis functions [?-?] and several others. 

[Few lines for a brief literature survey on the method of collocation with RBF to be prepared by Ed] 

In terms of versatility and simplicity, the direct method of collocation with radial basis functions which will be referred to in this paper as DRBF is the most appealing method. In addition to its simplicity, DRBF does not involve the problem of imposition of essential boundary conditions as encountered in most other meshless methods. Furthermore, it is truly meshless as no  elements are required for the interpolation of the solution variables. Although, CRBF has been applied successfully different types of differential equations, its efficiency for problems involving high gradients or singularities needs some attention. This paper tries to address that issue and suggests the addition of the logarithmic function as an augmented radial basis function. The addition of such function serves two purposes. First, it behaves like a homogeneous solution for the major part of the differential equation, i.e. the Laplacian operator. Second, it has the capability of capturing the singularity of the solution, especially at some critical points on the boundary. The paper, also, suggests an incremental-iterative procedure for extending the proposed method to non-linear problems. Although, the formulation and application are given for 2-D Poisson-type differential equations, the procedure is applicable for other types of differential equations.

This paper is organized as follows. In Section 2, the formulation and numerical implementation of the direct collocation with radial basis functions is described. The method is extended to non-linear problems in Section 3. The application of the proposed method is discussed through several numerical examples in Section 4. The paper ends with conclusions in Section 5.

2. Formulation 

Let us consider, first, the linear differential equation
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(1.a)

where L is a general second order linear differential operator and f(x) is a continuous function of the position. Let us assume that following general boundary conditions 
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where B is a linear differential operator and g(x) is a continuous function of the position. The solution of (1) can be approximated by 
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      (2)

where ║.║ is the Euclidean distance, Φ ,Ψ, and Θ are some suitable radial basis centered at xi, xj, xk , respectively and α, β, and γ are their respective coefficients to be determined. In the direct method of collocation with radial basis functions (RBF), only the first term of the series is retained, i.e. 
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(3)

where Φ  can be selected from the following:

1- Multi-quadrics (MQ), (c2+ r2)½
2- Reciprocal multi-quadrics, (c2+ r2)-½
3- Nth Polynomial splines, rn  

4- Thin plate splines, r2  Ln(r )

5- Gaussians, exp (-r2 /c)

Where r=║x-xj║ and c is a shape parameter. Note that all except the polynomial and thin plate splines require the specification of a shape factor, c. In order to limit the size of computations, only the first three RBF’s are considered in this paper. The coefficients αi can be obtained by using the approximated solution given by (3) to satisfy the differential equation (1.a) at N1 domain nodes and the boundary condition (1.b) at N2 boundary nodes, where N1+N2=N. The resulted collocation equations can be written in a matrix form as 
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In order to enhance the approximation, let us retain the first two terms in ( 2), i.e.
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        (5)

where  β = Log ║x-xj║ and  the nodes xj are distributed over a contour at an arbitrary distance d from the boundary. It should be noted that β is the fundamental solution corresponding to the Laplace equation. The addition of this function is motivated by two factors. First, it satisfies Laplace operator and therefore serves as a partial homogeneous solution to the differential equation. Second, due to its singular behavior, it has the capability of capturing the singularity of the solution in case the problem involves high gradients on or close to the boundary. Although, Φ can be chosen from the above mentioned RBF’s, It is decided to use the cubic polynomial spline for two reasons: 1) It has no shape parameter and therefore, the procedure for optimizing the choice of that parameter is avoided, 2) Preliminary numerical experiments on several Poisson’s equations have indicated that various radial basis functions have given the same accuracy when they were combined with the logarithmic function. 

The 2N1+N2 coefficients can be obtained by satisfying the differential equation (1.a) at N1 selected points over the boundary plus N2 selected points inside the domain and satisfying the boundary conditions (1.b) at the same N1 boundary nodes. The resulted system of equations can be written in the following matrix form
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(6)

In addition to the advantages mentioned above, the new method has another important advantage. It introduces a new N1 unknowns (βj , j=1,N1 ) which enable us to generate N1 equations for satisfying the governing differential equations at the N1 boundary nodes which was not possible in the case of direct DRBF method. It should be noted also that for the special case of L=Δ, L (Ψ)=0 and therefore the above equations are decoupled so that α and β can be determined independently.

3. Extension to non-linear problems

If equations (1.a) and (1.b) take the following forms
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(7.b)

where Nf and Ng are non-linear functions of their arguments, then equation (6) becomes 
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(8)

For problems involving high gradients, the solution of the above nonlinear equations cannot be obtained by direct iterative procedures and therefore, the following incremental-iterative procedure is suggested: 

1- Set Nf=Ng=0, apply a small increment of the boundary condition and perform the following iterative steps:

a. Solve (8) for the initial estimates of coefficients α and β.

b. Use (5) and its normal derivative to compute the initial estimates for u, du/dn, respectively, on the boundary and u, ∆u, etc. inside the domain.

c. Use the values obtained above to compute the initial estimate of Nf and Ng.

d. Repeat steps a to c until convergence is achieved. If the iterations do not converge, reduce the increment of boundary conditions and repeat the above procedure until convergence.  

2- Apply another increment and use the all the values obtained at the end of the previous incremental step as estimates for the unknowns and repeat the iterative steps explained above

3- Add more increments while repeating the above iterative procedure until the total boundary conditions are applied. 

4. Numerical examples

The objective of the following examples is to compare the accuracy of the proposed modified RBF method (MRBF) with the direct RBF method (DRBF). In all examples, Φ= r3 and Ψ=ln (║x-xj║) in the MRBF method while for the direct RBF (DRBF) the solution is performed for Φ=r3, Φ=(c+r2)½,(MQ) and Φ=(c+r2)-½ ,(RMQ). 
Example 1: Diffusion reaction problem

The governing equation is given by
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The linear problem, where n=1 and  k is constant, is considered first. The domain of the problem is assumed to be a unit circle with Dirichlet boundary condition of u=1. Two types of grids are used to model the problem. The first one is represented by 220 uniformly distributed nodes with 11 nodes in the radial direction and 20 nodes in the circumferential direction as shown in Figure 1.a. The second is represented by 220 nodes with 11 non-uniformly distributed nodes in the radial direction and 20 uniformly distributed nodes in the circumferential direction as shown in Fig. 1.b. The uniform grid is considered first and the results of the concentration u and flux q for k=1, 10, and 100 are given in Fig. 2-7. The results of u as shown in Figures 2-4 indicate that both RBF and MRBF are in good agreement with the exact solution. The same is true for the flux with k=1 and k=10 as shown in Figures 5 and 6 respectively. For k=100, however, the DRBF results for the flux (Fig. 7) show a substantial deviation from the exact solution at the boundary (R=1).  In order to improve the DRBF results of the flux for k=100, the problem is remodeled using the non-uniform grid (Fig. 1.b) and the results are plotted in Fig. 8. Although, the use of the non-uniform grid improved the DRBF results somewhat, the accuracy of the proposed MRBF is still much higher. This fact is better illustrated by Table 1, which compares the percentile errors of the two methods using the two different grids. [Table 1 is To be prepared by Husain]
Next, let us consider the non-linear case where k= (x12+x22+a2) and n=3 for the same geometry but with the boundary condition of u = 1/(1-a2). The analytical solution is u= which can be verified by substituting in the governing differential equation. The singular behavior of the solution at the boundary depends on the constant a and therefore, in order to asses the capability of the two methods in capturing the solution singularity at the boundary, the constant a is assumed to take the two values of 2 and 1.1. The analysis is performed for the two types of grids shown in Fig. 1. 

[Discussion of the results given in Figs 10- is to be completed by Ed]

Example 2: Burger’s equation

This equation is given by
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The domain of the problem is assumed to be a unit square with the Dirichlet boundary condition of u= 2/(x1-a) which is also a particular solution for the above equation and therefore represents the exact solution. Similarly, in this example, the parameter a varied in order to asses the capability of the numerical methods in capturing the solution singularity at x=0.5. The values considered for a is 0.6, 0.8 and 1.0. 

[Discussion of the results for u and q in Figs  are to be completed by Ed] 

5. Conclusion 

A simple, yet efficient and truly meshless method is presented for solving general linear and nonlinear Poisson’s differential equations. The numerical examples show that the addition of the fundamental solution to the standard global radial basis functions used in RBF method as suggested by the proposed MRBF method greatly improves its accuracy, especially for problems involving high gradients at the boundary. The only disadvantage of the proposed MRBF method is the determination of the parameter d which defines the distance between the domain boundary and the contour of the knots of the fundamental solution. Although, in this study, a wide range of .2 to 2 times the largest dimension of the domain of the problem does not affect the accuracy of the results, the issue needs to be investigated for other boundary value problems.
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