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Abstract

The Galerkin method is herein applied to the classical bending problem of a uniformly-loaded orthotropic
rectangular plate with clamped edges, a problem for which, to our knowledge, no exact analytical solution in its
general form exists. The tedious and error-prone computations inherent in such an approach are facilitated through

the use of a computer algebra system; and several solutions, based on di�erent approximations for the in®nite series
representing the assumed de¯ection function for the plate, are worked out, thereby extending previous work in the
literature. The accuracy and convergence of the present formulation are assessed on the basis of solutions

corresponding to the special case of material isotropy; and one such existing, manually-derived, result is shown to
be incorrect. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Computer algebra (or symbolic manipulation or
algebraic computation) systems have become quite
popular in engineering analysis [1±11]. These compu-

ter programs possess the remarkable capability of
manipulating both numbers and symbols; and, as
such, they are more versatile than traditional com-
puter languages, like FORTRAN and BASIC, which

perform only numerical computations. Without
doubt the advent of computer algebra systems has
rekindled interest in, and expanded the frontiers of,

the classical analytical methods of applied mech-

anics, which, when practicable, are preferable to the
`discrete' numerical schemes of computation (now

commonly associated with the digital computer), for
a variety of reasons, including their amenability to
parametric studies and the ready insight they a�ord
into the physical aspects of a given problem. The

reason for this is that computer-aided algebraic
computation can considerably reduce the tedium of
analytical calculations while increasing their re-

liability. An especially useful ®eld of application of
computer algebra systems is in ®nding the solution
of the variational problems of mathematical physics,

where they enable the possibility of employing
higher order approximations in routine fashion
[4,5,9,12]. In particular, it has been brie¯y shown

[5] how such an approach could be employed in the
treatment, by the well-established variational method
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of Galerkin, of the bending problem of clamped,

isotropic rectangular plates with and without elastic

foundations.

It is the purpose of the present article to apply the

Galerkin method to the problem of a uniformly-loaded

orthotropic rectangular plate with clamped edges, for

which, to our knowledge, no exact solution is avail-

able. Computations will be carried out by means of

Mathematica [13], a versatile computer algebra system

capable of performing numerical, symbolic, and

graphical computations in a uni®ed manner. Several

di�erent approximations for the in®nite series repre-

senting the de¯ection function for the orthotropic plate

shall be examined in detail, thereby extending previous

work reported in the literature, which, so far as we can

tell, is limited to the derivation of the de¯ection func-

tion corresponding to a rather crude one-term approxi-

mation by means of the (equivalent) Ritz method. The

work presented here includes, as a special case, the

simpler results corresponding to plates composed of

isotropic materials; and one such result reported in

Mikhlin's classic treatise [14] will be found incorrect.
Moreover, these isotropic-case results will be used as

guidelines in assessing the accuracy and convergence of
the present formulation.

2. Analytical formulation and results

The governing di�erential equation (often called
Huber's equation [15,16]) for the bending problem of

an orthotropic plate for which the principal axes of
orthotropy coincide with the x and y directions can be
expressed in the following form [15±18]:

Dx
@ 4w

@x 4
� 2H

@ 4w

@x 2@y2
�Dy

@ 4w

@y4
� q �1�

in which w and q de®ne the transverse displacement of

the plate and the applied transverse loading respect-
ively. The symbols Dx and Dy represent the ¯exural
rigidities about the y- and x-axes, respectively, while

Nomenclature

A surface area of plate
a plan dimension of plate
akl �k, l � 0, 1, 2, . . .� numerical coe�cients (see

Eq. (9))
b plan dimension of plate
c b/a

D ¯exural rigidity correspond-
ing to an isotropic material

D1 rigidity de®ned by Eq. (3)

D11±D20 `product rigidities' (see Eq.
(51))

Dx, Dy ¯exural rigidities about the y-
and x-axes, respectively

Dxy torsional rigidity
H e�ective torsional rigidity (see

Eq. (2))

k, l counters in series (9)
M1±M13 parameters de®ned by Eqs.

(44)±(46)

Mfi �i � 1, 2, 3� parameters de®ned by Eqs.
(36)± (38)

Mmax maximum bending moment

per unit length
�Mx, My�,Mxy bending and twisting

moments per unit length, re-
spectively, de®ned with refer-

ence to the (x, y ) axes
Q1±Q16 parameters de®ned by Eqs.

(47)±(50)

Q�i �i � 1, 3� parameters de®ned by Eqs.
(22) and (34)

Q�3i parameter de®ned by Eq.

(56)
Qf1±Qf4 parameters de®ned by Eqs.

(39)±(42)

Qmax maximum transverse shear
force per unit length

Qx, Qy transverse shear forces per

unit length
q applied transverse loading
q0 intensity of uniformly distrib-

uted loading

w transverse displacement func-
tion

w1±w3 parameters de®ned by Eq.

(43)
wf1 parameter de®ned by Eq.

(35)

wkl possible de¯ection function
for plate (see Eqs. (9) and
(13))

wmax maximum displacement
(x, y ) Cartesian coordinates
n Poisson's ratio corresponding

to an isotropic material

n1, n2 reduced Poisson's ratios (see
Eq. (3))

jkl �k, l � 0, 1, 2, . . .� displacement functions (see

Eq. (9))
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the parameter H denotes the e�ective torsional rigidity
[15,16] given by

H � D1 � 2Dxy �2�

where Dxy denotes the torsional rigidity, while the
rigidity D1 is de®ned in terms of the so-called reduced
Poisson's ratios [18] n1 andn2 as

D1 � n2Dx � n1Dy �3�

Furthermore, the stress couples �Mx,My,Mxy� and

transverse shear forces �Qx, Qy� acting on the plate can
be calculated from the displacement function w
through the following relations [15±18]:

Mx � ÿ
 
Dx
@ 2w

@x 2
�D1

@ 2w

@y2

!
�4�

My � ÿ
 
D1
@ 2w

@x 2
�Dy

@ 2w

@y2

!
�5�

Mxy � ÿ2Dxy
@ 2w

@x@y
�6�

Qx � ÿ @

@x

 
Dx
@ 2w

@x 2
�H

@ 2w

@y2

!
�7�

Qy � ÿ @
@y

 
H
@ 2w

@x 2
�Dy

@ 2w

@y2

!
�8�

Let us assume that the de¯ection function w can be
represented in the form of a series

w1wkl �
X1

k�0, 1, 2,...

X1
l�0, 1, 2,...

akl jkl �9�

where jkl denote a complete set of independent, con-

tinuous functions suitable for the representation of the
de¯ected surface and the satisfaction of all boundary
conditions (but not necessarily of the governing

equation (1)); akl are unknown numerical coe�cients.
Then the Galerkin (or, more precisely, Bubnov±Galer-
kin [14]; see also Ref. [19]) formulation of the plate-
bending problem for an orthotropic plate of the type

under consideration is given in Cartesian coordinates
by the following system of equations (the integrals are
evaluated over the entire surface area A of the plate,

and jkl � jkl�x, y�)�
A

� 
Dx
@ 4w

@x 4
� 2H

@ 4w

@x 2@y2
�Dy

@ 4w

@y4
ÿ q

!
j00 dx dy � 0

�
A

� 
Dx
@ 4w

@x 4
� 2H

@ 4w

@x 2@y2
�Dy

@ 4w

@y4
ÿ q

!
j10 dx dy � 0

..

.

�
A

� 
Dx
@ 4w

@x 4
� 2H

@ 4w

@x 2@y2
�Dy

@ 4w

@y4
ÿ q

!

jkl dx dy � 0

�10�

Thus, the problem can essentially be solved by substi-

tuting expression (9) into Eq. (10) and solving the
resulting linear equation system for the unknown coef-
®cients akl; once the latter have been calculated, the

(approximate) response of the plate can be determined
explicitly through Eq. (9).
In the special case of an isotropic medium, the fol-

lowing relations hold true [17,18]

n1 � n2 � n; Dx � Dy � H � D; D1 � nD;

Dxy � D
1ÿ n
2

�11�

where the symbols D and n represent the ¯exural rigid-

ity and Poisson's ratio of the material of the plate.
Clearly, for such a plate, the foregoing formulation is

Fig. 1. Uniformly-loaded, clamped rectangular plate.
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considerably simpli®ed. In particular, Eq. (1) reduces
to the well-known governing equation for isotropic

plates [15±17,20] while the Galerkin equation system
(10) corresponds to the simpler system of equations
presented in Ref. [17].

Now consider the speci®c case of a uniformly-loaded
rectangular plate with constant thickness and all four
edges clamped (as shown in Fig. 1, the loading inten-

sity is q0); for such a plate the boundary conditions are

w � @w

@x
� 0 at x �2

a

2

w � @w

@y
� 0 at y �2

b

2
�12�

Clearly, the following in®nite series (cf. Refs.
[14,17,18])

w1wkl �
�
x 2 ÿ a2

4

�2�
y2 ÿ b2

4

�2

X1
k�0, 1, 2,...

X1
l�0, 1, 2,...

akl x
k yl �13�

is suitable for the present analysis, since it comprises a
set of coordinate functions which individually satisfy

the boundary conditions; for practical purposes, how-
ever, it is sensible to omit odd powers of x and y in
the above series (13), as demanded by the inherent

symmetry of the de¯ection function w about the coor-
dinate axes.
In what follows we shall consider three di�erent ap-

proximations for the series (13), thus extending pre-
vious work reported in the literature [16,18], which, to
our knowledge, is limited to the derivation of the
de¯ection function corresponding to a one-term ap-

proximation by means of the (equivalent) Ritz method.
Included in the present work are corresponding ex-
pressions for stress couples and transverse shear forces,

de®ned by Eqs. (4)±(8). Also, the simpli®ed versions of
the above results corresponding to an isotropic plate
are given, thereby generalizing earlier solutions [14,17]

for such plates: namely, for this special case of ma-
terial isotropy, Timoshenko and Woinowsky-Krieger
[17] presented solutions for the de¯ection function of a
square plate corresponding to both a one-term and a

four-term (strictly, three-term, because of diagonal
symmetry) approximation, based on the Galerkin
method (including numerical values of bending

moments �Mx, My� at certain locations, obtained by
means of the above de¯ection functions); furthermore,
Mikhlin [14] used the Ritz method to derive the corre-

sponding one-term solution for a rectangular plate and
the three-term (strictly two-term) solution for a square
plate but without calculating the associated stress

couples and transverse shear forces. The isotropic-case
solutions corresponding to the present formulation are,

thanks to the use of symbolic computation, not only
precise (with fractions rather than decimals), but also
tidier than the previous solutions; they are also more

general than existing data, for they apply to rectangu-
lar plates (having arbitrary aspect ratios
�c � b=a; cr1)) and also encompass all the structural-

response parameters for a given problem. The pre-
sently obtained isotropic-case results are used to assess
the accuracy/convergence of the current formulation;

the benchmark analytical solutions for isotropy which
form the basis for this assessment are the approximate
series solutions worked out by Wojtaszak [21], Evans
[22] and Young [23], through the application of the so-

called superposition methods proposed by Hencky [24]
and Timoshenko [25] (see also Refs. [17,19]).

2.1. First approximation

For this approximation the de¯ection function (13)
is assumed to take the following form

w � a00j00 �14�
where

j00 �
�
x 2 ÿ a2

4

�2�
y2 ÿ b2

4

�2

�15�

Clearly, the problem is basically solved by substituting

the above expression (14) into the ®rst of Eq. (10),
with the integrals evaluated over the range x �
2a=2, y �2b=2: Once the coe�cient a00 is obtained

from the resulting equation, the (approximate) plate
response can be worked out (using Eq. (14)). The
Mathematica procedure adopted for this computation,

which includes expressions for the determination of the
associated moment and shear-force ®elds, is given in
Appendix A; and the results are

w � 49q0
2048a4Q�1

�4x 2 ÿ a2 �2
ÿ
4y2 ÿ a2c2

�2 �16�

Mx � 49q0
128a4Q�1

h
D1
�4x 2 ÿ a2 �2

ÿ
a2c2 ÿ 12y2

�
�Dx�a2 ÿ 12x 2 �ÿ4y2 ÿ a2c2

�2i �17�

My � 49q0
128a4Q�1

h
Dy�4x 2 ÿ a2 �2

ÿ
a2c2 ÿ 12y2

�
�D1�a2 ÿ 12x 2 �ÿ4y2 ÿ a2c2

�2i �18�
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Mxy � ÿ 49q0
4a4Q�1

Dxyxy�4x 2 ÿ a2 �
ÿ
4y2 ÿ a2c2

�
�19�

Qx � 49q0
16a4Q�1

x
�
3Dx

ÿ
8a2c2y2 ÿ 16y4 ÿ a4c4

�
� 2H

ÿ
4a2c2x 2 ÿ 48x 2y2 � 12a2y2 ÿ a4c2

��
�20�

Qy � 49q0
16a4Q�1

y
h
3Dy�8a2x 2 ÿ 16x 4 ÿ a4 �

� 2H
ÿ
12a2c2x 2 ÿ 48x 2y2 � 4a2y2 ÿ a4c2

�i
�21�

where

Q�1 � 7c4Dx � 4c2H� 7Dy �22�

It can easily be shown that the maximum de¯ection

wmax (at the centre �x � 0, y � 0)), bending moment
Mmax (corresponding to Mx at the edge point x �
a=2, y � 0� and shear force Qmax (corresponding to Qx

at x � a=2, y � 0� are given by the following ex-

pressions:

wmax � 49q0a
4c4

2048Q�1
�23�

Mmax � ÿ49q0a
2c4Dx

64Q�1
�24�

Qmax � ÿ147q0ac
4Dx

32Q�1
�25�

Furthermore, one can readily obtain the corresponding
formulae for an isotropic plate from the foregoing

Eqs. (16)±(25) by setting Dx � Dy � H � D; D1 � nD;
Dxy � D�1ÿ n�=2 (see Eq. (11)).
As noted earlier, the above formulation for a rec-

tangular orthotropic plate was previously considered in
Refs. [16,18], where Eq. (16) for the displacement func-
tion and its isotropic counterpart are presented; the

latter result alone can also be found in Refs. [14,26]
(the above works are all based on the equivalent Ritz
method of solution). On the other hand, Timoshenko
and Woinowsky-Krieger [17], using the Galerkin tech-

nique adopted here, treated the special case of a square
isotropic plate, giving numerical values of the displace-
ment function and bending moments at two speci®c lo-

cations on the plate (viz, w and Mx �My at
x � 0, y � 0; and Mx at x � a=2, y � 0). In the present
work, by contrast, the displacement function together

with the stress couples and transverse shear forces
have been presented in general form, and this enables
a thorough assessment of the accuracy of the solution

to be easily achieved. This has indeed been carried out,
as indicated in Tables 1±3, by reference to the isotro-

pic-case problem and on the basis of the analytical
series solutions mentioned earlier.
It can be seen that the order of accuracy obtainable

from this ®rst approximation is rather poor, although
the response pattern is correctly predicted. For the
(maximum) de¯ection values displayed in Table 1, the

greatest error (roughly, 31.5% ) in the present solution
occurs in the limiting case of in®nite aspect ratio
�c � 1); however, the error is considerably less for

plates having aspect ratios 1:0RcR2:0, ranging from
5.6 (for c = 1.0) to 11.8% (for c = 2.0) approxi-
mately. (It may be useful to note that values of displa-
cement, stress couples, and shear forces corresponding

to the case of in®nite aspect ratio can readily be
obtained by computing their limiting values as c41,
using the Mathematica built-in function Limit.) As

would be expected, the displacement ®eld is predicted
to a higher degree of accuracy than the moment ®eld,
which, in turn, is predicted to a greater level of accu-

racy than the shear-force ®eld. This is, of course, due
to the fact that the stress couples and transverse shear
forces are proportional to the second and third deriva-

tives of the displacement function, respectively. Thus,
for plates having 1:0RcR2:0, the errors in the (maxi-
mum) bending moment Mx at x � a=2, y � 0 (Table 2)
range from 0.4 (for c = 1.5) to 17.2% (for c = 1.0)

approximately; the corresponding errors for the (maxi-
mum) shear force Qx at the same location (based on
the smaller range of results quoted in Table 3) are 1.9

(for c = 1.75) to 40.9% (for c = 1.0). (Note that the
errors in the calculated values of Mx and Qx (at x �
a=2, y � 0� corresponding to the limiting case c � 1
are roughly the same as their counterpart (31.5%) for
the displacement at the center, viz: 31.3% for Mx;
32.0% for Qx:)

2.2. Second approximation

Here we assume a three-term approximation for the
de¯ection (13),as follows

w � a00j00 � a20j20 � a02j02 �26�
in which j00 is de®ned by Eq. (15), while

j20 �
�
x 2 ÿ a2

4

�2�
y2 ÿ b2

4

�2

x 2

j02 �
�
x 2 ÿ a2

4

�2�
y2 ÿ b2

4

�2

y2 �27�

By combining the above expression (26) with Eq. (10)
and solving the ensuing 3 � 3 equation system, the
coe�cients a00, a20, and a02 can be worked out; and

F.C. Mbakogu, M.N. PavlovicÂ / Computers and Structures 77 (2000) 117±128 121



once this is done all the response parameters readily
follow. A suitable Mathematica procedure for this

exercise is displayed in Appendix B. The corresponding
results are

w � 77q0
2048a6Q�3

�4x 2 ÿ a2 �2
ÿ
4y2 ÿ a2c2

�2
wf1 �28�

Mx � 77q0
256a6Q�3

hÿ
4y2 ÿ a2c2

�2
DxMf1

ÿ �4x 2 ÿ a2 �2D1Mf2

i
�29�

My � 77q0
256a6Q�3

hÿ
4y2 ÿ a2c2

�2
D1Mf1

ÿ �4x 2 ÿ a2 �2DyMf2

i
�30�

Mxy � 77q0
8a6Q�3

Dxyxy�4x 2 ÿ a2 �
ÿ
4y2 ÿ a2c2

�
Mf3 �31�

Qx �ÿ 77q0
16a6Q�3

x

h
3Dx

ÿ
4y2 ÿ a2c2

�2
Qf1

ÿH�a2 ÿ 4x 2 �Qf2

i
�32�

Table 1

Variation of non-dimensional displacement w�q0a4=D� at the centre �x � 0, y � 0� with aspect ratio c �� b=a�, for an isotropic plate,

and comparison with the benchmark series solution [22] (see also Refs. [17,21,23])

c Present solution Series solution [22]

First approximation Second approximation Third approximation

1.0 0.00133 0.00126 0.00127 0.00126

1.1 0.00159 0.00150 0.00151 0.00150

1.2 0.00182 0.00172 0.00173 0.00172

1.3 0.00202 0.00191 0.00191 0.00191

1.4 0.00220 0.00206 0.00207 0.00207

1.5 0.00235 0.00219 0.00220 0.00220

1.6 0.00248 0.00228 0.00230 0.00230

1.7 0.00259 0.00236 0.00238 0.00238

1.8 0.00269 0.00242 0.00245 0.00245

1.9 0.00277 0.00246 0.00250 0.00249

2.0 0.00284 0.00249 0.00254 0.00254

1 0.00342 0.00215 0.00291 0.00260

Table 2

Variation of non-dimensional bending momentMx�q0a2� at the edge point x � a=2, y � 0 with aspect ratio c �� b=a�, for an isotro-

pic plate, and comparison with the benchmark series solution [22] (see also Refs. [17,21,23])

c Present solution Series solution [22]

First approximation Second approximation Third approximation

1.0 ÿ0.0425 ÿ0.0521 ÿ0.0515 ÿ0.0513
1.1 ÿ0.0507 ÿ0.0592 ÿ0.0582 ÿ0.0581
1.2 ÿ0.0582 ÿ0.0653 ÿ0.0640 ÿ0.0639
1.3 ÿ0.0648 ÿ0.0704 ÿ0.0688 ÿ0.0687
1.4 ÿ0.0705 ÿ0.0744 ÿ0.0726 ÿ0.0726
1.5 ÿ0.0754 ÿ0.0776 ÿ0.0756 ÿ0.0757
1.6 ÿ0.0795 ÿ0.0801 ÿ0.0779 ÿ0.0780
1.7 ÿ0.0830 ÿ0.0819 ÿ0.0796 ÿ0.0799
1.8 ÿ0.0860 ÿ0.0831 ÿ0.0809 ÿ0.0812
1.9 ÿ0.0886 ÿ0.0840 ÿ0.0817 ÿ0.0822
2.0 ÿ0.0907 ÿ0.0844 ÿ0.0823 ÿ0.0829
1 ÿ0.1094 ÿ0.0688 ÿ0.0931 ÿ0.0833
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Qy � 77q0
16a6Q�3

y

h
3Dy�4x 2 ÿ a2 �2Qf3

�H
ÿ
a2c2 ÿ 4y2

�
Qf4

i
�33�

in which

Q�3 �25,025
�
c12D3

x �D3
y

�
� 834,635c4ÿ

c4D14 �D15

�
� 129,740c2

ÿ
c8D16 �D17

�
� 718,608c6D18 � 77,363c4

ÿ
c4D19 �D20

�
� 7436c6H 3 �34�

wf1 � a2w1 � x 2w2 � y2w3 �35�

Mf1 � a4M1 � a2x 2M2 � x 4M3 � a2y2M4

� x 2y2M5 �36�

Mf2 � a4M6 � a2x 2M7 � a2y2M8 � x 2y2M9

� y4M10 �37�

Mf3 � a2M11 � x 2M12 � y2M13 �38�

Qf1 � a2Q1 � x 2Q2 � y2Q3 �39�

Qf2 � a4Q4 � a2x 2Q5 � a2y2Q6 � x 2y2Q7 � y4Q8 �40�

Qf3 � a2Q9 � x 2Q10 � y2Q11 �41�

Qf4 � a4Q12 � a2x 2Q13 � x 4Q14 � a2y2Q15

� x 2y2Q16 �42�

where

w1 � 1430
�
c8D2

x �D2
y

�
� 73,036c4D11

� 9477c2
ÿ
c4D12 �D13

�
� 1183c4H 2 �43a�

w2 � 1404c4D11 � 37,180D2
y � 1144c6D12

� 64,220c2D13 � 7436c4H 2 �43b�

w3 � 37,180c6D2
x � 1404c2D11 � 64,220c4D12

� 1144D13 � 7436c2H 2 �43c�

M1 � 2860c8D2
x � 145,721c4D11 ÿ 6435D2

y

� 18,668c6D12 � 2899c2D13 � 507c4H 2 �44a�

M2 � ÿ34,320c8D2
x ÿ 1,736,016c4D11

� 411,840D2
y ÿ 213,720c6D12

� 543,192c2D13 � 60,840c4H 2 �44b�

M3 � ÿ
�
84,240c4D11 � 2,230,800D2

y

� 68,640c6D12 � 3,853,200c2D13

� 446,160c4H 2
�

�44c�

Table 3

Variation of non-dimensional shear force Qx�q0a� at the edge point x � a=2, y � 0 with aspect ratio c �� b=a�, for an isotropic

plate, and comparison with the benchmark series solution [21] (see also Refs. [19,23])

c Present solution Series solution [21]

First approximation Second approximation Third approximation

1.00 ÿ0.26 ÿ0.45 ÿ0.45 ÿ0.44
1.25 ÿ0.37 ÿ0.53 ÿ0.50 ÿ0.49
1.50 ÿ0.45 ÿ0.56 ÿ0.52 ÿ0.52
1.75 ÿ0.51 ÿ0.57 ÿ0.52 ÿ0.52
2.00 ÿ0.54 ÿ0.56 ÿ0.51 ÿ0.52
1 ÿ0.66 ÿ0.41 ÿ0.56 ÿ0.50
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M4 � 74,360c6D2
x � 2808c2D11 � 128,440c4D12

� 2288D13 � 14,872c2H 2 �44d�

M5 � ÿ
ÿ
892,320c6D2

x � 33,696c2D11

� 1,541,280c4D12 � 27,456D13

� 178,464c2H 2
� �44e�

M6 � 6435c10D2
x ÿ 145,721c6D11 ÿ 2860c2D2

y

ÿ 2899c8D12 ÿ 18,668c4D13 ÿ 507c6H 2 �45a�

M7 � ÿ
�
2808c6D11 � 74,360c2D2

y � 2288c8D12

� 128,440c4D13 � 14,872c6H 2
�

�45b�

M8 � ÿ411,840c8D2
x � 1,736,016c4D11

� 34,320D2
y ÿ 543,192c6D12

� 213,720c2D13 ÿ 60,840c4H 2 �45c�

M9 � 33,696c4D11 � 892,320D2
y � 27,456c6D12

� 1,541,280c2D13 � 178,464c4H 2 �45d�

M10 � 2,230,800c6D2
x � 84,240c2D11

� 3,853,200c4D12 � 68,640D13

� 446,160c2H 2 �45e�

M11 � 6435
�
c8D2

x �D2
y

�
ÿ 145,370c4D11

ÿ 2613c2
ÿ
c4D12 �D13

�
� 1352c4H 2 �46a�

M12 � ÿ
�
4212c4D11 � 111,540D2

y � 3432c6D12

� 192,660c2D13 � 22,308c4H 2
�

�46b�

M13 � ÿ
ÿ
111,540c6D2

x � 4212c2D11

� 192,660c4D12 � 3432D13

� 22,308c2H 2
� �46c�

Q1 � 1430c8D2
x � 72,334c4D11 ÿ 17,160D2

y

� 8905c6D12 ÿ 22,633c2D13 ÿ 2535c4H 2 �47a�

Q2 � 7020c4D11 � 185,900D2
y � 5720c6D12

� 321,100c2D13 � 37,180c4H 2 �47b�

Q3 � 37,180c6D2
x � 1404c2D11 � 64,220c4D12

� 1144D13 � 7436c2H 2 �47c�

Q4 � 6435c2
�
c8D2

x �D2
y

�
ÿ 145,370c6D11

ÿ 2613c4
ÿ
c4D12 �D13

�
� 1352c6H 2 �48a�

Q5 � ÿ
�
4212c6D11 � 111,540c2D2

y � 3432c8D12

� 192,660c4D13 � 22,308c6H 2
�

�48b�

Q6 � ÿ411,840c8D2
x � 1,731,804c4D11

ÿ 77,220D2
y ÿ 546,624c6D12 � 21,060c2D13

ÿ 83,148c4H 2 �48c�

Q7 � 50,544c4D11 � 1,338,480D2
y � 41,184c6D12

� 2,311,920c2D13 � 267,696c4H 2 �48d�

Q8 � 2,230,800c6D2
x � 84,240c2D11

� 3,853,200c4D12 � 68,640D13

� 446,160c2H 2 �48e�

Q9 � 17,160c8D2
x ÿ 72,334c4D11 ÿ 1430D2

y

� 22,633c6D12 ÿ 8905c2D13 � 2535c4H 2 �49a�

Q10 � ÿ
�
1404c4D11 � 37,180D2

y � 1144c6D12

� 64,220c2D13 � 7436c4H 2
�

�49b�
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Q11 � ÿ
ÿ
185,900c6D2

x � 7020c2D11

� 321,100c4D12 � 5720D13

� 37,180c2H 2
� �49c�

Q12 � 6435
�
c8D2

x �D2
y

�
ÿ 145,370c4D11

ÿ 2613c2
ÿ
c4D12 �D13

�
� 1352c4H 2 �50a�

Q13 � ÿ77,220c8D2
x � 1,731,804c4D11

ÿ 411,840D2
y � 21,060c6D12

ÿ 546,624c2D13 ÿ 83,148c4H 2 �50b�

Q14 � 84,240c4D11 � 2,230,800D2
y � 68,640c6D12

� 3,853,200c2D13 � 446,160c4H 2 �50c�

Q15 � ÿ
ÿ
111,540c6D2

x � 4212c2D11

� 192,660c4D12 � 3432D13

� 22,308c2H 2
� �50d�

Q16 � 1,338,480c6D2
x � 50,544c2D11

� 2,311,920c4D12 � 41,184D13

� 267,696c2H 2 �50e�

and the following relations de®ne `product rigidities' in
the above Eqs. (34) and (43)±(50):

D11 � DxDy; D12 � DxH; D13 � DyH;

D14 � D2
xDy; D15 � DxD

2
y;

D16 � D2
xH; D17 � D2

yH; D18 � DxDyH;

D19 � DxH
2; D20 � DyH

2
�51�

The maximum de¯ection, bending moment, and shear

force corresponding to the present approximation can
readily be shown to be given by the following ex-
pressions:

wmax � 77q0a
4c4

2048Q�3

h
1430

�
c8D2

x �D2
y

�
� 73,036c4D11 � 9477c2

ÿ
c4D12 �D13

�
� 1183c4H 2

i
�52�

Mmax � ÿ77q0a
2c4

64Q�3

ÿ
1430c8D3

x � 73,387c4D14

� 10,725D15 � 9763c6D16 � 25,532c2D18

� 3042c4D19

� �53�

Qmax � ÿ231q0ac
4

32Q�3

ÿ
1430c8D3

x � 74,089c4D14

� 29,315D15 � 10,335c6D16

� 57,642c2D18 � 6760c4D19

� �54�

The special case of an isotropic plate is readily attained
by applying the relevant relations (11) to the foregoing
equations. In particular, the de¯ection function for
such a plate can easily be shown to be given by the fol-

lowing expression

w � 77q0
2048a6DQ�3i

�4x 2 ÿ a2 �2
ÿ
4y2 ÿ a2c2

�2
�
n
a2
�
1430

ÿ
1� c8

�
� 9477c2

ÿ
1� c4

�
� 74,219c4

�
� x 2

ÿ
37,180� 64,220c2 � 8840c4 � 1144c6

�
� y2

ÿ
1144� 8840c2 � 64,220c4 � 37,180c6

�o
�55�

in which

Q�3i � 25,025
ÿ
1� c12

�
� 129,740c2

ÿ
1� c8

�
� 911,998c4

ÿ
1� c4

�
� 726,044c6 �56�

Furthermore, it is a trivial exercise to show that, for a
square (isotropic) plate �c � 1), the de¯ection function
(55) reduces to the following form

w � 77q0
16,404,480a6D

�4x 2 ÿ a2 �2
ÿ
4y2 ÿ a2

�2�
269a2

� 312
ÿ
x 2 � y2

��
�57�

It is important to note that an incorrect expression cor-

responding to the above result (57) has been presented
in Mikhlin's classic treatise [14]; the error in the above
work must have been introduced in the course of sol-
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ving the 3� 3 Ritz equation system corresponding to
the square plate considered, for we found the above

equation system (which can be reduced to 2� 2 form
as two of the equations are the same on account of di-
agonal symmetry) to be, in fact, correct (and, of

course, equivalent to its Galerkin counterpart implicit
in the present formulation). In this connection, one
may also note that an expression for the (maximum)

de¯ection at the centre of a square plate corresponding
to the incorrect solution presented by Mikhlin [14] has
been quoted by Dym and Shames [26]; this incorrect

Ritz-formulation-based expression Ð the source of, or
calculation for, which was not indicated by the above
writers Ð may have been taken from Ref. [14].
Clearly, this illustrates the usefulness of symbolic-ma-

nipulation systems in reliably performing tedious calcu-
lations of the kind encountered in the present solution
process, as well as in checking existing, manually-de-

rived, results in the literature, as demonstrated else-
where [27].
As would be expected, the present approximation

yields more accurate results than the preceding, one-
term, approximation. We ®nd from Table 1, for
example, that for plates having aspect ratios

1:0RcR2:0, the errors in the calculated displacements
range (roughly) from 0.5 to 2.0%, and that, for a num-
ber of the aspect ratios considered herein, these displa-
cement results coincide with their benchmark

counterparts (at least for the number of decimal places
to which both sets of results have been evaluated). Evi-
dently, the calculated bending moments and transverse

shear forces corresponding to 1:0RcR2:0 (Tables 2
and 3) are not as accurate as their displacement
counterparts, although they represent a marked

improvement over the corresponding actions for the
one-term approximation. Thus, for the results quoted
in Tables 2 and 3 for plates having aspect ratios
1:0RcR2:0, the maximum errors in the bending

moment and shear force are now reduced to 2.7% (for
c = 1.6) and 9.6% (for c = 1.75) (note that their
counterparts for the ®rst approximation are 17.2%

(for Mx� and 40.9% (for Qx), both values correspond-
ing to the square plate).As indicated in Tables 1±3, the
maximum error for each of the three calculated re-

sponse parameters corresponds to the limiting case c �
1 (c.f. preceding approximation ), the errors varying
from 17.3 to 18.0%. Taken together, the above results

indicate that the present approximation can be applied
with reasonable accuracy to practical plates, at least
for purposes of preliminary design.

2.3. Third approximation

For this approximation the series (13) is assumed to
be comprised of six terms, as follows

w � a00j00 � a20j20 � a02j02 � a40j40 � a04j04

� a22j22 �58�

where j00, j20, and j02 are de®ned by Eqs. (15) and
(27), while

j40 �
�
x 2 ÿ a2

4

�2�
y2 ÿ b2

4

�2

x 4

j04 �
�
x 2 ÿ a2

4

�2�
y2 ÿ b2

4

�2

y4

j22 �
�
x 2 ÿ a2

4

�2�
y2 ÿ b2

4

�2

x 2y2 �59�

The unknown coe�cients akl in Eq. (58) can, of course,
be determined by solving the 6� 6 algebraic equation
system obtained by combining the above expression

(58) with Eq. (10); the ensuing results Ð which can
readily follow from a Mathematica procedure similar
to that shown in Appendix B for the preceding (i.e.
three-term) approximation Ð are quite voluminous,

and, for reasons of brevity, have not been presented
here.
Highly accurate results can be obtained by means of

the present approximation, with the maximum errors
in the calculated values of the response parameters
(including shear forces) displayed in Tables 1±3 being

of the order of 2% for plates having aspect ratios
1:0RcR2:0 (note, in particular, that the displacement
®eld is practically indistinguishable from its counter-

part predicted by the benchmark solution [22], with
the two sets of results coinciding ± for the number of
decimal places quoted ± for the majority of the aspect
ratios presently considered). Once more, the greatest

error for each of the parameters in Tables 1±3 corre-
sponds to the limiting case of in®nite aspect ratio
�c � 1), the errors being, roughly, 12%. Obviously,

higher order approximations would be required to
reduce the errors corresponding to this limiting case to
within values acceptable for engineering purposes; but,

as indicated by the foregoing results, such higher order
approximations would clearly be unnecessary for the
treatment of practical plate problems since, as is well
known, beyond aspect ratios of c12, one-way beam

bending (along the shorter side) predominates.

3. Conclusions

The well-known Galerkin method has been applied

in the solution of the classical bending problem of a
uniformly-loaded clamped rectangular plate endowed
with orthotropic material properties. The tedious,
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time-consuming and error-prone computations in-

herent in such an approach have been facilitated
through the use of Mathematica, a versatile computer
algebra system capable of performing numerical, sym-

bolic and graphical calculations in a uni®ed manner. It
is worth noting, however, that the present investigation
could, alternatively, be carried out Ð with similar

results Ð by means of any one of a number of other
available computer algebra systems (such as, for

example, Derive, Macsyma, Maple and Reduce
[4,12,28]), which are also capable of performing the
rather basic algebraic computations involved in the

formulation.
Three di�erent approximations (having one, three

and six terms, respectively) for the in®nite series repre-
senting the assumed de¯ection function for a plate of
the type considered are treated, thereby extending pre-

vious published work, which, to our knowledge, is lim-
ited to the derivation of the de¯ection function
corresponding to a one-term approximation by means

of the (equivalent) Ritz method. Evidently, the present
work includes, as a special case, the simpler results per-

taining to plates composed of isotropic materials, some
of which have Ð thanks to the current use of algebraic
computation Ð now been generalized. Moreover, these

isotropic-case results have been used to advantage in
assessing the accuracy and convergence of the present

formulation.
It is worth noting that the closed-form variational

approach given here can readily be applied to rec-

tangular plates, having arbitrary aspect ratios and ma-
terial properties, in routine fashion. As would be
expected, the requisite calculations and the ensuing

output increase as the number of terms included in the
series for the de¯ection function increases (albeit with

concomitant improvement in the accuracy of the pre-
dicted response). Clearly, it should, in theory, be easy
to implement higher order approximations for the

de¯ection function, leading to further improvement in
accuracy. In practice, however, it is found that the ``ex-

ponential'' growth of symbolic computation as the
number of independent parameters is augmented
[3,7,9,12] e�ectively limits the size of the problem that

can be solved. Indeed, we found that, for problems of
the type presently considered, de¯ection functions hav-
ing more than six terms could not be implemented,

owing to insu�cient computer memory capacity.
Nevertheless, this shortcoming of the present approach

is tempered by the fact that such higher-order approxi-
mations have been shown to be, as a rule, accurate
enough for the treatment of practical problems. Fur-

thermore, it is worthy of note that the solutions given
here are ideally suited to parametric studies: thus, for
example, it is obvious that the specialized versions of

the present results corresponding to isotropic plates
are more amenable to such studies than the previous

analytical series solutions [21±23] used presently for
benchmarking purposes, which have been formally

solved only for speci®c values of plate geometries c
and a single value of Poisson's ratio (namely, n � 0:3).
Extensions and generalizations of the present

approach to the calculation of plates are easily envi-
saged. For instance, the present solution scheme can
readily be extended so as to encompass plates resting

on elastic foundations (as noted earlier, the treatment
of such problems, in the context of material isotropy,
has already been brie¯y discussed in Ref. [5]): essen-

tially, the scheme of calculation can proceed as in the
case of ordinary plates (i.e. those without elastic foun-
dations) once the Galerkin Eqs. (10) have been suit-
ably modi®ed in order to include the reaction of the

foundation under the externally applied loading. Also,
generalizations of the present approach to include pro-
blems involving plates having other than rectangular

geometries (e.g. elliptical, circular, and triangular
shapes) and clamped boundaries, as well as those per-
taining to non-uniform loadings, pose no conceptual

di�culties; and, indeed, solutions to some such pro-
blems, based on the present technique and other vari-
ational methods, can be found in the literature [5,16±

18]. Clearly, the application of computer algebra not
only facilitates the solution of these and more di�cult
problems (such as those involving elastic foundations),
but also leads to the obtention of more accurate

results, by enabling the implementation of higher order
approximations in a straightforward manner.
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Appendix A. Mathematica procedure for the ®rst

approximation

(� Specify the assumed de¯ection function �)
phi = Expand [ (x^2 - a^2/4) ^2 � (y^2 - b^2/4)

^2];

w=a00 �phi;
(� Evaluate the Galerkin integral �)
GalInt=Simplify [Integrate [ (Dx�D [w, {x, 4} ]+

2�H�D [w, {x, 2}, {y, 2}] +
Dy�D [w, {y, 4} ] - q0) �phi,
{x, - a/2, a/2},{y, - b/2, b/2}]];

(� Solve the Galerkin equation for a00 �)
Galsol = Simplify [Solve [GalInt == 0, a00 ] ];

(� Evaluate the plate response �)
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w = Simplify [w /. Galsol /.b -> a�c]
d2x = D [w, {x, 2}]; d2y=D [w, {y, 2}]; d12=D

[w, x, y];
Mx = Simplify [ - (Dx�d2x + D1�d2y) ]
My = Simplify [ - (D1�d2x + Dy�d2y) ]
Mxy = Simplify [ - 2�Dxy�d12]
Qx = Simplify [ - (Dx�D [d2x, x] + H�D [d2y,

x]) ]

Qy = Simplify [ - (H�D [d2x, y] + Dy�D [d2y,
y]) ]

Appendix B. Mathematica procedure for the second

approximation

(� Specify the assumed de¯ection function �)
phifact = Expand [ (x^2 - a^2/4) ^2� (y^2 - b^2/

4) ^2];
phi [1] = phifact;
phi [2] = phifact�x^2;
phi [3] =phifact �y^2;
w = Sum [a[i] �phi [i], {i, 3} ];

(� Evaluate the Galerkin integral �)
GalInt = Simplify [Table [Integrate [ (Dx�D [w,

{x, 4}] +
2�H�D [w, {x, 2}, {y, 2}] +
Dy�D [w, {y, 4}] -q0) �phi [i],
{x, -a/2, a/2}, {y, -b/2, b/2}], {i, 3}]];

(� Solve the Galerkin equation for ai (i = 1, 2, 3)
= (a00, a02, a20) �)
Galsol =Simplify [Solve [GalInt==0, Table

[a[i], {i, 3} ] ] ];
(� Evaluate the plate response as in Appendix A
procedure �)
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