EXACT METHOD FOR STATIC AND NATURAL VIBRATION ANALYSES OF
B1-PERIODIC STRUCTURES

By C. W. Cai,' H. C. Chan,” and Y. K. Cheung’®

ABSTRACT: The U-transformation technique has been applied successfully to the analysis of periodic structures
and nearly periodic structures. In this study the technique will be extended to the analysis of bi-periodic structures
under static loading or natural vibration, since it is possible to uncouple the governing equation by applying the
U-transformation twice. To explain the method used in this paper, a simple cyclic system with bi-periodicity is
considered first. It helps to demonstrate the procedures for uncoupling the static equilibrium equation to obtain
the closed form solution for displacement and the natural vibration equation to obtain the natural frequencies
and modes. Then a continuous beam with equidistant rigid and elastic supports (a structure with bi-periodicity),
subjected to a concentrated load, is studied and the generalized analytical solution is derived. Some numerical
results are also given. Though not illustrated, it is obvious that the arbitrary static loading condition can be dealt

with in the same manner.

INTRODUCTION

The earliest study on bi-periodic structures might be the
analysis of compound periodic structures by Lin and McDaniel
(1969) where the transfer matrix method was used. The wave
propagation in doubly periodic structures was investigated, us-
ing a wave approach by Sen Gupta (1972). Mead (1975) had
considered wave propagation in bi-periodic structures of
monocoupled and multicoupled systems. The dynamics of bi-
periodic structures was studied by McDaniel and Carroll
(1982) where the analysis was formulated from standard stiff-
ness and transmission methods. The research works presented
in the foregoing text are concerned with the wave propagation
and natural vibration for bi-periodic structures and are not ap-
plicable to the static and forced vibration analyses.

The U-transformation technique developed by Cai et al.
(1988) has been applied to the static and forced vibration anal-
yses of periodic structures (Cheung et al. 1989; Cai et al.
1989). Recently the U-transformation is used to analyze nearly
periodic structures by Cai et al. (1995). It is conceived that
bi-periodic structures may be treated as the nearly periodic
ones.

The static and natural vibration analyses of bi-periodic
structures are considered in this study. The U-transformation
will be used to uncouple the governing equation of structures
with bi-periodicity. As a result a set of simultaneous equations
with single periodicity will be obtained. Then by applying the
U-transformation again, it will lead to the analytical solution.
To explain this method a simple cyclic system with bi-peri-
odicity is considered first. Then a continuous beam with equi-
distant rigid and elastic supports, subjected to a concentrated
load, is analyzed. The closed form solution is derived.

UNCOUPLING OF GOVERNING EQUATION FOR
ROTATIONALLY BI-PERIODIC STRUCTURES

The method to be used will be demonstrated by using a
simple model. At the outset, a structure with cyclic bi-peri-
odicity is considered. A general model is illustrated in Fig. 1
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where all the coupling springs are of the same stiffness k. K
and K + AK denote the stiffness for two kinds of cantilever
beams, M and M + AM denote the lumped masses, and F, x,
denote the load-displacement for the jth subsystem.

Static Problem

The equilibrium equations can be expressed as

K + 2k)x; — k(xjs1 + x-1)= —AKx; + F;, j=p,2p,...,np
(1a)

K + 20 — k(g + x,20)=F;, j#p,2p,....,np (1b)
where p, 2p, ..., np = ordinal numbers of the subsystems

with stiffness K + AK. The term —AKx, on the right-hand
side of (1a) may be treated as the load as well as F,.

One can now apply the U-transformation (Cai et al. 1988)
to (la) and (1b). The U- and inverse U-transformation may be
defined as

N
Z W=vrbg - i=1,2,...,N (2a)
=]

ﬂ'i

and

N
D e r=1,2,...,N (2b)
J=1
in which ¢ = 27/N; i = V' —1; and N = total number of sub-
systems, i.e., N = pn.

The equilibrium equations (1a) and (15) may be expressed
in terms of the generalized displacements ¢, (r=1, 2, ...,
N) as

(K + 2k)g, — 2kcosrbg, =f +f% r=1,2,...,.N (3

§|~

where

r — — — E —#mp — l)rw mp (4)

m-l
z —#j= 1)NPF (5)
j-l

The generalized displacement g, in (3) may be formally ex-
pressed as

L+ fr
K + 2k(1 — cos ry)

q-= 6)

Substituting (6) and (4) into (2a) yields



FIG. 1. Rotationally Bi-Periodic System
i X KJ—mpIrys
x = _AK - Xmp + X,
N &t & K + 2k(1 — cos rip)
j=1,2,...,N )
in which
2 efI=hre fr ®)
Pt K + 2k(1 — cos ri)
xf (j=1,2,...,N)=solution for the perfect periodic system

(i.e., AK = 0) subjected to the same loading as that acting on

the bi-periodic system. When the specific loading condition is

given, x* (j=1,2, ..., N) can be obtained from (8) and (5).
Inserting j =sp (s =1, 2, ..., n) in (7) gives

X,= —AK D, BunXu + X%, s=1,2,...,n 9

mm=l
where
X, =x, XF=xi (10a,b)
and
I(J‘ m)pris

_ij
"”‘N =/ K + 2k(1 — cos r§)’

ssm=1,2,...,n (1D

B,.» = influence coefficient for the perfect periodic system.

By using the U-transformation once, the equilibrium equa-
tions (1ag) and (15) with N (=pn) unknowns become (9) with
n unknown. Noting that B,,, (s, m = 1, 2, ..., n) shown in
(11) have the cyclic periodicity, i.e.

Bii=Baz=""" = PBun (12a0)

Bs.l = B:+1,2 == Bn.n—s+l = Bl,n—:+2 == Bs—l,m
s=2,3,...,n (125)

One can now apply the U-transformation again to (9), i.e.,
introducing

E Vg s=1,2,...,n  (13a)

1-1
or

n

Qj='_1_2

n =i

e, i=1,2,...,n (13b)

with ¢ = 2m/n, (9) becomes

Q= —AK D Bue ™0 + b, j=1,2,...,n (14)

m=

where
Z —i(s— l)ﬁvx* (15)
s=]
Obviously the solution for Q; of (14) is
b
Q= 7t (16)
1+ AK D, Bme ™%
mw]
Substituting (11) into (16) results in
b
Q= . an
1+ 72 K + 2k — 2k cos[j + (r — Dnly]™
r=|
Inserting (17) in the later U-transformation (13a) yields
x _=___., - 1(:—l)jvpb
\/_ le ’
AK < .
72 K + 2k — 2k cos[j + (r — Dn]b]
1
s=1,2,...,n (18)
in which
¢ =27/n;, Y=2u/N, N=pn (19a-c)

The exact solution for x; (j = 1, 2, ..., N) of (1a) and (1b)
can be found by inserting (18) into (7). The exact solution
includes two independent parameters of periodicity for bi-pe-
riodic systems, i.e., p and n. If p, n, and loads are given, the
displacement for each subsystem can be calculated.

For example, consider the following case:

p=3,n=2@saresut N=6, ¢ =7 and Y = w/3) (20a)

Fis=Fs=P and F;=0, j#3,6 (20b)
Inserting (20b) into (5) yields
2P _,
;‘: = — —l2‘l|‘r/3, = 2’ 4, 6 21
f \/g e r (2la)
f¥=0, r=1375 (21b)

and then substituting (204) and (21) into (8) gives
P | 2 cos(2jw/3) 1
X e ———— ——
¥ =3 [ K+3k K]

Pk

Ko o =
T ERE ¥ 3k 7 12,45 (224)
. PK+K

R TEEY

that is

=3,6 (22b)

It can be verified that x* shown in (22) is the displacement
solution for the system with AK = O subjected to the loads
shown in (20b).

Noting the definition shown in (10) and p = 3 gives
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o xx o PEH D
P Xf=——

:T KK + 3k 23

and then substituting the preceding equation and ¢ = 7 into
(15) yields

V2P + k)

by=0; b= m (24a,b)

Finally, substituting (24) and (20a) into (18) results in

o P(K + k)
BEXTKE + 3k) + AKK + k) (25
then inserting (25) and (22) into (7) results in
Pk

e N TR N e
The displacement x; (j = 1, 2, ..., 6) shown in (25) and (26)

satisfies the equilibrium equations (1a) and (1) with p = 3
and n = 2.
Natural Vibration

The natural vibration equation for the bi-periodic system
shown in Fig. 1 may be expressed as

(K + 2k — Mo)x, ~ k(x)., + x_,) = —(AK — AMa?)x),

J=p.2p,...,np (27a)
(K + 2k — Mo¥x; — k(x,, + %-)=0, j£p,2p,...,np
(27b)

where w = natural frequency; and x; = amplitude for jth sub-
system. Applying the U-transformation (2) to (27a) and (27b)
results in

(K + 2k — Mw?q, — 2kcos rig, =f,, r=1,2,...,N (28)
where

_ n
_(BK = AMG) S iy @9

f; B \/17 m=l

and then

fr
= 0
=K+ 2k — 2k cos ry — Mo 30)

Substituting (30) and (29) into (2a) yields

ei(.i —mp)ry

(AK ~ AM6?) s
N=T N 22K+2k—Mw2—2kcosr¢x"""

m=]  r=]

j=1L2,...,N €3))

Introducing the notation X; = x,, and inserting j = sp (s = 1,
2, ...,n)in (31) gives

X, = ~(AK — AMw) D, BtXa s=1,2,...,n (32)

m=1

where

1 N Hs—mpri

x _ > e

’”_N2K+2k—Mm2—2kcosr¢’

r=l

ssm=1,2,...,n
(33)

B¥, = harmonic influence coefficient for the considered system
with AK = AM = 0.

Applying the U-transformation (13a) and (13b) to (32) re-
sults in
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0 = —(AK — AMw?) D, Bhe™™ kg j=1,2,...,n
mm]
34)

When x, (s = 1, 2, ..., n) are not vanishing, the frequency
equation may be expressed as

1+ (AK — AMo?) D, Bhe ™™ M =0, j=1,2,...,n (35

mul

Substituting (33) and ¢ = py into (35), the frequency equation
becomes

P
1+ (AK — AMo) 2 (K + 2k — Mo

r=1

—2kcos[j+ (r— Dnly}'=0, j=1,2,...,n (36a)

When x,, (s = 1, 2, . . ., n) are vanishing, the frequency equa-
tion can be obtained from (28) and (29) as

K+ 2k(1 —cos r{y) — Mw*=0 (36b)

where the half-wave number 2r must be equal to integer times
n and <2N.

Consider now the case shown in (20a) and M = 0, AM =
M,. For this case, the frequency equation (36a) becomes
AK — Myw? <

j=1,2 37N

-1
1+ {K+2k—2kcos[j+2(r—1)]§} =0,

The solution for »” of (37) may be expressed as

j=12 (38)
where

3 -1
1 ™
- — + — i+ — — P =
I 3 ;ﬂ {K 2k — 2k cos[j + 2(r — 1)] 3} , J=12

(39a)
or
K + 3k K+ k
h=kvox+a ""Rx+am 9
Inserting (39b,¢) into (38) gives
+ + +
i AK  KE+30. . AK  (KHRK 4D 0

T My MyK+k M, MoK + 3k)

where ®,; and w, = first and second natural frequencies, re-
spectively.

Consider now the natural modes. The generalized displace-
ments for the first natural mode may be expressed as

2+0 0=0 (41a,b)
Substituting (41) into (13a) with n = 2 and ¢ = 7 gives
xm=X=A4A xx=X,=A (42a,b)

where A = arbitrary constant. Substituting (42) and o* = w}
shown in (40q) into (31) results in

k
K+ k

X =Xy = X4 = Xs = A 43)
The first mode is obtained as shown in (42) and (43).

In a manner similar to that for finding the first natural mode,
the second natural mode (Q,; # 0, Q, = 0) may be found as



p
22 /2

! x je j'e+(1—1)pl jot{n-U)p N N= ._ P+
VA 2 iK 22 i F] L] =np, Jo= 5
y L .- i .- "
(0)
P -P
1 jo jn(i-‘)pl jo +{n~1)p N N+1 jotnp ia+(2n-j)p| igt(2n-1)p 2N
o 2 2 i 28 3’ 22 i [ 8 i K] i L l 2% a
1 _—— j ——— n n+1 _— 2n-j+1  c—. 2n
FIG. 2. Continuous Beam with Bi-Periodic Supports: (a) Actual System; (b) Equivalent System
xn=X=4 x=X=-A (44a,b) Continuity across the roller supports requires the following
conditions to be satisfied:
and
k k w ( l) 0; w <1) 0 (47a,b)
=y = — . =y, = I\"5]=Y% W5 < g
X =Xs= - A, xp=x, X+ 3kA (44¢c,d) 2 2

The natural frequencies and modes shown in (40) and
(42)—(44) are in agreement with those obtained from the usual
stiffness method.

The preceding described method can be extended to ana-
lyzing the forced vibration of bi-periodic systems subjected to
harmonic loading.

STATIC ANALYSIS OF CONTINUOUS BEAMS WITH
TWO KINDS OF PERIODIC SUPPORTS

Consider a beam with uniform flexural rigidity E/ running
over N + 1 number of roller supports and n elastic supports
as shown in Fig. 2(a), where K denotes the stiffness of the
elastic supports and / denotes the span length between any two
adjacent roller supports. The distance between any two adja-
cent elastic supports is pl. It is assumed that each elastic sup-
port is located at midspan and N = pn, and a symmetric plane
of the beam exists, i.e., p must be an odd number.

To form an equivalent structure with cyclic bi-periodicity
for the beam considered, it is necessary to extend the original
beam by its symmetrical image and apply the antisymmetric
loading on the corresponding extended part as shown in Fig.
2(b). Such an equivalent system can be regarded as a cyclic
bi-periodic system, because the slopes and moments at both
extreme ends are the same. The simply supported boundary
conditions at both extreme ends for the original beam can be
satisfied automatically in its equivalent system.

In each span a local coordinate system oxy with the origin
0 at its midspan is established. The equilibrium equations may
be expressed as

EI % = Fj(x) — Kw,(0)5(x),

J=Jodo+p ... o+ 2n—1p (45a)

d*w,(x
El—dig—)=F,(x), J# Jodo+ Prevorio+ @n—1p (45b)
where jo = (p + 1)/2; and j, = ordinal number of the span
with the first elastic support; w,(x) and F,(x) = deflection and
loading functions for jth span; 8(x) = Dirac delta function.
The loading functions must satisfy the following antisym-
metric condition:

Fanepui®) = —=F(~=%, j=1,2,...,N 46)

in which Fi(x) (j =1, 2, ..., N) = real loading acting on the
original beam.

1 1 i 1
Wj' <E) = W/'.H <—5); w/” (5) = wj"“ ("5) (47C,d)

where j = 1, 2, ..., 2N; and a prime denotes differentiation
with respect to x and w,x.; = w; due to the cyclic periodicity.
Introducing the U-transformation

2N

_____1 y-nre i
wy(x) = > "), j=1,2,...,2N (48
(%) N 2 ¢ q:x), J (48q)

2N

1 —Kj-Dre,
(x) = e “wx), r=1,2,...,2N (48b
q,(x) N ;_l, (x) (48D)

with ¢ = /N into (45a), (45b), and (47) results in

£l d*q,(x)

e =f() +f*x), r=1,2,...,2N (49

and

where
KS 2n
f= __2(},)_ 2 e—l[jo+(m—l)P-l]r\PWjo+(m_l)p(0) (1))
V m=l
1 2N
11 = 2 W (52)
J=l

If the loading condition is given, the generalized load f* can
be found. The formal solution for g, of (49) subject to bound-
ary condition (50) may be expressed as

g-(x) = g7(x) + g¥(x) (53)
where
K 2n
q(')(x) = _EI\/2_N 2 e—luo+(m—1)p—l]r'hwj0+(m_”p(o) (Cro + C,,x

m=]

1
+ Cx® + Cux® + m lxl’), r=1,2,...,2N

(54)
P (7 — cosr B sin r{s
Co=38 (2 + cos rq;)' Ci=—ia (2 + cos ri (55a.)
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I {5+ cos ri\ _ i sin r{s
Ca="3 (2 + cos r\l;)' € =16 (2 + cos rd}) (5c.d)

and g¥(x) = generalized displacement for the cyclic periodic
system with K = 0 subjected to the same loading as that acting
on the original system.

Substituting (53)—(55) into (48a) yields

wi(x) = wi(x) + wix) (56)
in which
K 2n 2N
)=~ 3 2 @ (o + G

1
+ Cox* + Cux® + —= ), j=1,2,...,2N
Crax * T2 |x|> J (57a)

2N
1

*(x) = —=== fi-brigx(x), j=1,2,...,2N (57b
wi(x) mge q7(x), J (57b)
wi¥(x) = deflection function of jth span for the periodic system
with X vanishing under the same loading as that acting on the
original system.

Inserting j = jo + (s — 1)p and x = O into (56) and (57a)
gives

Ws-‘-“}f}EBmW + W¥ s=1,2,...,2n (58)

m=l

where

B.\'m 2N 2 e'(s—m)Pr“'C 0y S, M= 1, 2,... , 2n (59)

r=]

Ws = wj0+(s—l)p(0)v W;k = w;:+(s—l)p(0)’ 5= 1’ 29 LR | 2n (60)

It is obvious that B, (s, m = 1, 2, ..., 2n) shown in (59)
satisfy the cyclic periodicity condition as shown in (12), where
n should be replaced by 2n. To solve the simultaneous equa-
tion (58), it is convenient to introduce the U-transformation as
illustrated next.

Let

3

IO s=1,2,...,2n (6la)

v

or
l 2n
=5 D e, j=1,2,...,2n  (61b)
N 5wl

where ¢ = 7/n.
Equation (58) can be expressed in terms of Q; (j = 1, 2,

, 2n) as
Q= ——E Bme ™ Q4+ b, j=1,2,...,2n (62)
m-l
in which
1 2N
B = 5 E EmNC  m=1,2,...,2n  (63)
=1
2n
b = —— e lehieyx - i=1,2,...,2n 64
/l /__Zn . J (64)

Substituting (63) into (62) results in

Q= Z Crav—innoQy + by (65)

r=1

where C;._12n,0 has been defined as (55), i.e.
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Creo-vano = 300 \ 3 T cosly ¥ (- = D2als
The solution for Q, of (65) can be written as

b / K 7 — cos[j + (r — 1)2n]Y
Q=b 384EI P& 2+ cos[j + (r— D2ny]’

j=1,2,...,2n 67)

P <7 — cos[j + (r — 1)2n]¢) ©6)

In which b, shown in (64) is dependent on the loading con-
dition. When the specific load is given, b; can be found without
difficulty.

Consider a concentrated load of magnitude P acting at the
midpoint of the middle span, say kth span [i.e., k = (N + 1)/2
and N is an odd number], as shown in Fig. 2(a) where j = k.
For the equivalent system shown in Fig. 2(b), equal but op-
posite concentrated loads must be applied to the kth and 2N
— k + 1)th spans with all other spans unloaded, i.e.

Fi(x) = P8(x); Foy_rn1(x) = —P8(x); Fi(x)=0 (68a-c)

where j 2k, 2n — k + 1; k= (N + 1)/2; and N = odd number.
Inserting (68) into (52) yields

2P3(X)  _iu1yry

f(x)=—me el r=1,3,...,2N—1 (69a)
) =0, r=24,...,2N (69b)
and § = 7/N.

Noting that g¥*(x) represents the solution for g,(x) of (49)
with f,(x) vanishing subject to boundary condition (50) and
f¥(x) is shown in (69), g¥(x) can be found as

Pe—l(k Drd l
qrx) = —E\/T—N— <C,o + Cux + Cox* + Cx° + E |x|3),
r=13...,2N —~ 1 (70a)
g*x)=0, r=2,4,...,2N (70b)
where C,,—C,; have the same definition as those shown in

(55).
Substituting (70) into (57b) yields
2N-1

P i(j—kord 2
(x) = m rlz's‘s 4 =k CrO + Crlx + Cr2x

1
+ C.x* + — 3, i=1,2,...,2N
ol |x|) j -

Noting W} = w¥,_1,,(0), k = (N + 1)/2, and jo = (p + 1)/2,
inserting j = j, + (s — 1)p and x = 0 into (71) gives
aN—1

W;k = P e—ir'rr/2ei(s—1/2)pr¢ccro (72)

and then substituting (72) into (64) results in

2P 1 .
e:j(<P )2 E Cj+(r—!)2n,0’ j= 1,3,...,

== 2n — 1
b Elp \/2n = "
(73a)
by=0 j=24,...,2n (73b)

Since N, p are odd numbers, therefore, n (=N/p) is also an odd
number. This property has been used for deriving (73a) and
(73b).

Afterward inserting (73a), (73b), and (66) into (67) yields

PP 1
= — - ifo—mi2 14+ K ,
Q= 12EI V7 © E,:/( ° 2)

2n—1 (74a)

ji=13...,



TABLE 1. Maximum Deflections of Continuous Beams with
Bi-Periodic Supports Subjected to Concentrated Load P at Mid-

point (p=3)

Nn)
Ko 3(1) 9 (3) 15 (5) 21 (7)
(1) 2 (3) {4) (5)
0.0 4.40000 4.19623 4,19615 4.19615
0.1 3.05556 2.95515 295514 2.95514
0.2 2.34043 2.28083 2.28083 2.28083
0.5 1.37500 1.35410 1.35410 1.35410
1.0 0.81481 0.80741 0.80741 0.80741
2.0 0.44898 0.44672 0.44672 0.44672
Multiplier PI*/384EI PU*/384E1 PI*/348E] PI*/348El
Q=0 j=2,4,....,2n (74b)
where
2 107 = cos[j + (r = 1)2n]Y 5
~ " p 4 2+ cos[j + (r — 1)2n]Y
K T
Ke=——; U=— 76a,b
°=3%Er YN ( )

K, = nondimensional parameter of the stiffness for the elastic
support.
Substituting (74a) and (74b) into (61a) yields

P13 2n-1
ro-1p(0) = W, = ils—(1+12)J%
Wio+s-1p(0) T ;;3 e Ej:

1+ K, L os=1,2,...,2
/( °§;:>] : " an

and ¢ = /n.

Now the deflection function for each span can be found by
inserting (71), (57a), and (77) into (56). The maximum de-
flection occurs at the midpoint of the loaded span. The max-
imum deflection can be obtained by inserting s = (n + 1)/2

in (77) as
384E1n,.,3[2/ ( tK )] 78

in which 2, shown in (75) is dependent on p and N. Noting
N = np, (78) includes two independent parameters n or N and
p besides K;. Some numerical results for (78) are given in
Table 1 where p = 3 and the total number of spans N and the
nondimensional stiffness K, take several values, respectively.

Consider the particular case of X = 0. By substituting K, =
0 and (75) into (78), the maximum deflection can be expressed
as

Wiax = Wiy 1y2(0) =

2

_ PP 1S <57~ coslj + (r — 1)2n)y
Ve = 384EI np /44 &4 2 + coslj + (r — 1)2nlb

PP 1S 7 = cos my
T 384EIN &, 2 + cos my (79)

The preceding result is in agreement with that obtained by
Cheung et al. (1989).

CONCLUSIONS

In this paper it has been demonstrated that the U-transfor-
mation technique can be applied to the static analysis of con-
tinuous beams with periodic rigid and elastic supports, and the
rigorous analytical solution has been derived for the concen-
trated load condition. It is obvious that the present method of
solution is applicable to an arbitrary static loading condition.

This method may be extended to the analysis of two-di-
mensional structures with bi-periodicity. For example, rectan-
gular stiffened plates (with periodic roller supports and two
opposite continuous simply supported edges) and simply sup-
ported rectangular plates (with two types of periodic ribs) fall
within the solvable two dimensional bi-periodic structures, but
the derivation of the solutions will be lengthy.

The U-transformation technique may also be applied to the
natural vibration analysis of some bi-periodic structures as
shown in the section entitled Uncoupling of Governing Equa-
tion for Rotationally Bi-Periodic Structures. Generally, the fre-
quency equation may be derived, but the solution for natural
frequency cannot be obtained explicitly.
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