
50 /
DESIGN AND IMPLEMENTATION OF VERSATILE

BEAM ANALYZER

By S. T. Mau,1 Fellow, ASCE, and X. Tao2

ABSTRACT: A versatile beam analyzer is presented in this note. It displays shear, moment, and deflection
diagrams as well as influence line diagrams of a two-dimensional beam. The computing engine of the program
was carefully designed to handle changing segmental flexural rigidity easily as well as to minimize computing
time. Coupled with an effective graphical user interface, the analyzer responds instantaneously to a user’s on-
screen play. The analyzer can be used both as a learning tool and as a tool for preliminary design of continuous
beams. The methodology used for the development of this beam analyzer can be extended to other specialty
computer programs.
INTRODUCTION

The introduction of object-oriented programming (OOP)
makes it possible to develop sophisticated programs in a rel-
atively short time through the use of ‘‘objects’’ that are highly
portable (Ross et al. 1992a; 1992b). The first writer of this
paper developed a simple program for the display of shear,
moment, and deflection diagrams of a three-support beam un-
der a single concentrated load using graphical user interface
(GUI) and OOP (Mau and Aruna 1994). It was for the NeXT
station. Recently, a powerful beam program for Macintosh
computers was published as part of a comprehensive com-
puter-aided education program for mechanics of materials
(Cooper and Miller 1996).

In this note a versatile beam analyzer is presented. It is
developed for use on IBM compatible PCs using the Borland
C11 compiler (Cantu and Tendon 1992). It expands the scope
of the previously developed three-support single-load analyzer
to include a variety of support, connection, and loading com-
binations and allows the change of beam flexural rigidity from
segment to segment. In addition to the shear, moment, and
deflection diagrams, the influence line diagrams can also be
displayed upon user command. A distinguished feature of this
program is the way the changing segmental flexural rigidity is
handled, as shall be described. The resulting computing engine
is very efficient and consumes little time; coupled with an
effective GUI, it produces an instantaneous response to any
user on-screen play. In the following, the design process of
this analyzer is described. Some examples are given to illus-
trate the versatility of the program.

ATTRIBUTES OF BEAM ANALYZER

Within the limits of a two-dimensional, linear-elastic, small-
deflection engineering beam theory, the beam analyzer is to
show shear, moment, and transverse deflection diagrams or
influence-line diagrams for a variety of support, connection,
and loading conditions. Change of any conditions should be
effected through on-screen graphics interface, and the effect
of any change should be shown instantaneously.

The beam section property is to be represented only by its
flexural rigidity, EI. Along the beam length, however, the EI

1Dean, Newark College of Engrg., New Jersey Inst. of Technol., New-
ark, NJ 07032. E-mail: mau@admin.njit.edu; formerly, Prof., Dept. of
Civ. and Envir. Engrg., Univ. of Houston, Houston, TX 77204-4791.

2Grad. Student, Dept. of Civ. and Envir. Engrg., Univ. of Houston,
Houston, TX.

Note. Discussion open until June 1, 1999. To extend the closing date
one month, a written request must be filed with the ASCE Manager of
Journals. The manuscript for this technical note was submitted for review
and possible publication on July 24, 1997. This technical note is part of
the Journal of Computing in Civil Engineering, Vol. 13, No. 1, January,
1999. qASCE, ISSN 0877-3801/99/0001-0050–0052/$8.00 1 $.50 per
page. Technical Note No. 16278.
JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999
FIG. 1. Support, Connection, Loading, and Reaction Defini-
tions of Beam

value is allowed to vary in a piecewise constant fashion, i.e.,
the beam can be divided into a number of segments, each with
a constant but different EI (see Fig. 1).

The left and right ends of the beam can be supported in any
way the user wishes. The user can choose from among three
general categories of support—free, hinged, or fixed (Fig. 1).
For each category, the support conditions are divided into ver-
tical and rotational conditions and the user is prompted to sup-
ply further data on vertical displacement and rotation. Based
on the user input, the program is to internally generate a sup-
port type as well as its associated support value.

Internal supports and internal hinges can also be included
(Fig. 1). Each internal support can be either a support with a
specified vertical displacement (including zero) or a spring
with specified flexibility.

Three types of transverse loading are included: concentrated
load, distributed load of constant intensity, and concentrated
moment.

COMPUTING ENGINE

Referring to Fig. 1, the basic unknowns can be identified as
the following: four end reactions FR, MR, FL, and ML; reaction
forces at internal supports Fj (j = 1, 2, . . . S); deflection and
rotation at left end WL and uL; and relative rotations at internal
hinges uj (j = 1, 2 . . . C). The reason for the selection of these
parameters as unknowns will become clear when the control
equations are described. Thus, a total of 4 1 S 1 C 1 2
equations are needed, where S and C are the numbers of in-
ternal supports and internal hinges, respectively. These equa-
tions are listed in Table 1 for the case of constant flexural

FIG. 2. (a) Example Problem Showing Shear, Moment, and De-
flection Diagrams; (b) Influence Lines of Shear, Moment, and
Deflection of Middle Section (5 m from Left End)

rigidity EI throughout the beam. Modifications needed to ac-
commodate different EI for different segments of the beam are
lengthy but easily derived. They are not included here, for
brevity. A brief description of the nature of these equations is
in order.

The first two equations are the force and moment equilib-
rium equations of the whole beam. The contributions of the
applied concentrated load, distributed load, and concentrated
moments are all lumped to the right-hand-side (RHS) of the
equations. The next C equations are moment equilibrium equa-
tions of the free-body-diagram to the left of the ith internal
hinge, i.e., the summation of moment about an internal hinge
of all forces and moments to the left of the hinge is zero. The
above 2 1 C equations, being equilibrium equations, are not
dependent on the flexural rigidity of the beam. These equations
involve only the force unknowns.

The next S equations are compatibility equations requiring
that the total contribution to the deflection at the ith internal
support be zero, when calculated by integration from the left
end. If a prescribed support settlement is given, it is moved to
the right-hand-side (denoted as in Table 1). Because theW9i
deflection at any point is calculated by integrating from the
beam equation using the left end as the origin, it depends on
the deflection and rotation of the left end as well as those at
any internal support to the left of the point in question. Thus,
JO
FIG. 3. Warning of Unstable Configuration

it is necessary to include the left-end deflection and rotation,
WL and uL, and the rotational jump at any internal hinges, uj,
as unknown parameters, while the right-end deflection and ro-
tation, WR and uR, need not be.

The nature of the last four equations depends on how the
right end and the left end are constrained. The first two are
related to the vertical and rotational constraints, respectively,
of the right end, and the last two are for the same of the left
end. Each equation has three possibilities as shown in Table
1. For example, if the vertical or rotational constraint type is
designated as free (rsotype=0, lsotype=0, or rrotype=0, lro
type=0 in Table 1), then the correct condition becomes support
reaction force or moment be zero. If the right-end vertical or
rotational constraint is designated as rigid (rsotype=1 or rro
type=1 in Table 1), then the right-end vertical deflection or
rotation must equal to the prescribed value, which could be
nonzero (rsovalue or rrovalue in Table 1).

The 2 1 C 1 S 1 4 equations are solved as soon as the
user specifies a stable configuration. Furthermore, the shear,
moment, and deflection values at 201 equally spaced points
along the beam are calculated. The user can also specify a
particular location to show the value of the shear, moment,
and deflection. A function is written to compute such infor-
mation on demand. If the user specifies the influence line mode
of the beam analyzer and gives a location value along the
beam, the shear, moment, and deflection influence lines of the
cross section are computed at the same 201 points by sweeping
a unit load through. The shear influence line would automat-
ically change to a reaction influence line if the specified lo-
cation coincides with that of an internal support.

Examples

Shown in Fig. 2(a) is the on-screen display of an example
problem and its shear, moment, and deflection diagrams.
Shown in Fig. 2(b) are the influence line diagrams of a middle
section of the same beam.

An interesting feature of the program is the ability to judge
whether a configuration is stable. It will display a warning
whenever the support conditions render the beam unstable
(see Fig. 3), so that the user knows additional supports are
needed or undesirable internal hinges must be deleted or re-
located.

What cannot be illustrated in static figures is the dynamic
nature of the GUI. Most of the on-screen objects can be
manipulated by the mouse to effect an instant response.
This beam analyzer is now available to the public free of
charge. Interested readers may send a message by e-mail to
the writer.
URNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 1999 / 51

TABLE 1. Matrix of Control Equations and Right-Hand-Side (RHS) Vector

Equations and unknowns
(1)

FR

(2)
MR

(3)
FL

(4)
ML

(5)
Fl . . . Fi . . . FS

(6)
WL

(7)
uL

(8)
ul . . . uj . . . uC

(9)
RHS
(10)

(Fy=0 1 — 1 — 1 . . . 1 . . . 1 — — — (F9

(MR=0 — 21 L 1 L 2 XS — — — (M9R

Ml=0
?

Mi=0
?

MC=0

— —

?
?

XCi

?
?

1
?
1
?
1

?
?

(XCi 2 XSj)
a

?
?

— — — (M9i

Wl=0
? ? ?

?
?

1
?

?
?

?
?

Wi=0 — —
3X i

6EI

2X i

2EI
fij

b 1 XSi (XSi 2 XCj)
a W 9i

? ? ? ? ? ? ?
WS=0 ? ? ? 1 ? ?

rso type=0 (free), FR, OR 1 0 0 0 0 0 0 . . . 0 . . . 0 0
rso type=1 (rigid), WR=-rsovalue, OR 0 — L3/6EI L2/2EI (L 2 Xi)

3/6EI 1 L L-XCj A-rsovalue
rso type=2 (spring), WR1rsovaluea FR=0 rsovalue L3/6EI L2/2EI (L 2 Xi)

3/6EI 1 L L-XCi A

rrotype=0 (free), MR=0, OR 1 0 0 0 0 0 . . . 0 . . . 0 0
rrotype=1 (rigid), uR=-rrovalue, OR — 0 L2/2EI L/EI (L 2 Xi)

2/2EI — 1 1 . . . 1 . . . 1 B-rrovalue
rrotype=2 (spring, uR-rrovaluea MR=0 -rrovalue L2/2EI L/EI (L 2 Xi)

2/2EI 1 1 . . . 1 . . . 1 B

lso type=0 (free), FL=0, OR 1 0 0
lso type=1 (rigid), WL=-lsovalue, OR — — 0 — — 1 — — -lsovalue
lso type=2 (spring), WL1lsovaluea FL=0 lsovalue 1 0

lro type=0 (free), ML=0, OR 1 0 0
lro type=1 (rigid), uL=-lrovalue, OR — — — 0 — — 1 — -lrovalue
lro type=2 (spring), uL-lrovaluea ML=0 -lrovalue 1 0

Note: A = downward deflection at right end due to external loadings; B = clockwise rotation at right end due to external loadings. rsotype, rrotype,
lso type, lrotype = support types of right or left (r or l) end for vertical or rotational constraints (s or r). rsovalue, rrovalue, lsovalue, lrovalue = displacement
or rotation value (if type=1), vertical or rotational spring flexibility (if type=2).

aOnly if XSi 2 XCj > 0, otherwise zero.
bfij = fj 1 (XSi 2 XSj)

3/6EI if i not less than j, otherwise zero, where fj = spring flexibility.
APPENDIX. REFERENCES
Cantu, M., and Tendon, S. (1992). Borland C11 3.1 object-oriented

programming. Bantam, New York.
Cooper, S. C., and Miller, G. R. (1996). ‘‘A suite of computer-based tools

for teaching mechanics of materials.’’ Comp. Appl. in Engrg. Educ.,
4(1), 41–49.

Mau, S. T., and Aruna, V. (1994). ‘‘Application of OOP and GUI to the
development of educational software in structural mechanics. Proc., 1st
52 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 199
Congr. on Comp. in Civ. Engrg., J. Comp. in Civ. Engrg., ASCE, Res-
ton, Va., 8(2), 1273–1279.

Ross, T. J., Wagner, L. R., and Luger, G. F. (1992a). ‘‘Object-oriented
programming for scientific codes. I: thoughts and concepts.’’ J. Comp.
in Civ. Engrg., ASCE, 6(4), 480–496.

Ross, T. J., Wagner, L. R., and Luger, G. F. (1992b). ‘‘Object-oriented
programming for scientific codes. II: examples in C11.’’ J. Comp. in
Civ. Engrg., ASCE, 6(4), 497–514.
9

