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Abstract

Iterative domain decomposition coupling is one of the recent approaches for combining the boundary element method (BEM) and the finite
element method (FEM). The domain of the original problem is subdivided into two sub-domains, which are separately modeled by the FEM
and BEM. Successive renewal of the variables on the interface of the two sub-domains is performed through an iterative procedure to reach
the final convergence. In this paper, we investigate the iterative method. We also establish the convergence conditions. A simple numerical
example is given to elaborate on the effect of different factors such as initial guess, boundary conditions, and geometrical and material

properties of the sub-domains on solution convergence. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The boundary element method (BEM) and the finite
element method (FEM) are widely used for the numerical
solution of partial differential equations. Each of the two
methods has its own advantages and disadvantages, and
there are undoubtedly situations, which favor FEM over
BEM and vice versa. Often one problem can give rise to a
model favoring one method in one region and the other
method in another region. Examples include the detailed
analysis of stresses around an underground opening. The
FEM can be employed to capture the plastic behavior at
the vicinity of the opening. The remaining infinite/semi-
infinite linear elastic region may be best represented by
the BEM. Another application, where coupling the FEM
and BEM seems to be most efficient, is the analysis of
elasto-plastic fracture mechanics problems. In such cases,
the plastic region around the crack can be modeled by the
FEM while the remaining linear elastic region can be
modeled by the BEM.

Unfortunately, the system of equations, produced by the
FEM and BEM, are expressed in terms of different variables
and cannot be linked as they stand. The coupling of the two
methods has been a topic of great interest for more than two
decades. It was achieved using various approaches, which
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can be roughly classified into FEM hosted, BEM hosted, and
those not belonging to either of these two categories. See,
e.g. Refs. [1-27] not to mention many others. A literature
survey on the subject can be found elsewhere [14,28,29].

The first two approaches [1—15] employ an entire unified
equation for the whole domain, by combining the discre-
tized equations for the BEM and FEM sub-domains.
Although the FEM hosted approach conceived more conve-
nience than the BEM hosted approach, their shortcoming is
that the algorithm for constructing the entire equation is
highly complicated when compared with that for each single
equation. In order to overcome the stated inconvenience,
iterative domain decomposition coupling methods were
developed [21-27] where there is no need to combine the
coefficient matrix for the FEM and BEM sub-domains.

Although, the iterative coupling methods offer many
advantages over other methods and seems to be promising,
the important issue of convergence is still not fully
addressed. The objective of this paper is to establish the
convergence conditions of the iterative method proposed
by Lin et al. [25] and Feng and Owen [26]. We also discuss
the effect of various factors involved in the convergence of
the iterative coupling method.

2. BEM and FEM algebraic representation

Consider an isotropic, linear elastic solid of domain (2
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enclosed by a boundary I'. Somigliana’s identity is the
starting point for stress analysis of elastic bodies by direct
BEM. This identity can be written as [30]:

Ci(Duy () = Jru;(g, 0)t(x) dl’ — th;(g,x)uj dr

" Jgu;(g: Dbj(x) 402 (1)

where the indicial notation and Cartesian reference frame
are used. The quantities u;, #; and b; denote components of
the displacement, traction and body force vectors,
respectively. The symbol *’ stands for the fundamental
values and the free term C;; is dependent upon the geometry
of the boundary.

For the numerical implementation of Eq. (1), the bound-
ary I' is divided into a number of boundary elements
I'“ (I'=3,1") and the geometry of each element and the
displacements and tractions on it are approximated by
different interpolation functions. Neglecting body forces
and after the process of boundary discretization, the bound-
ary elements equations are obtained

[H]{u} = [G]{t} € I'* 2)

where {u} and {t} are vectors containing the boundary
values for the displacements and the tractions and [H] and
[G] are influence coefficient matrices.

For the FEM, the algebraic assembled element equations
are given by

[Kl{u} = {f} € 0" A3

where [K] is the stiffness matrix for the system, and {u} and
{f} are the nodal displacements and force vectors,
respectively.

3. Iterative coupling methods

As mentioned earlier, the conventional coupling methods
employ an entire unified equation for the whole domain by
altering the formulation of one of the methods to make it
compatible with the other. However, the algorithm for
constructing the entire equation is highly complicated
when compared with that of each single equation. Another
drawback of the conventional coupling methods is that the
resulting assembled matrix is asymmetric and fully
populated in contrast to the symmetric sparsely banded
stiffness matrix of the FEM. Hence, special matrix equation
solvers have to be used, which are less efficient than the
symmetric equation solvers.

More recently, the coupling of the BEM and the FEM has
been achieved through the iterative domain decomposition
methods [21-27]. In these coupling methods, there is no
need to combine the coefficient matrices for the FEM and
the BEM sub-domains, as required in most of the conven-
tional coupling methods. A second advantage is that differ-
ent formulation for the FEM and BEM can be adopted as

base programs for coupling the computer codes only.
Separate computing for each sub-domain and successive
renewal of the variables on the interface of both sub-
domains are performed to reach the final convergence.

Gerstle et al. [21] presented a solution method, which is
iterative in nature. Their idea is to iteratively apply displa-
cement boundary conditions on the interface of the FEM
and BEM sub-domains, calculate the resulting forces on
the interface, and then to use the unbalanced force vector
at the interface as a predictor for the applied displacements
in the next iteration. However, their method is applicable
only for symmetric BEM formulation. Perera et al. [22]
presented a parallel method, which is based on the interface
equilibrium of Steklov Poincare. Their method may not be
suited for certain classes of problems where the natural
boundary conditions are specified for the entire external
boundary of the FEM or BEM sub-domains. In such case
the specification of Neumann boundary conditions over the
whole boundary of any sub-domain, will result in non-
unique solutions. Kamiya et al. [23] employed the renewal
methods known as Schwarz Neumann—Neumann and
Schwarz Dirichlet—Neumann. Both methods, however, are
not suited for problems where the natural boundary condi-
tions are specified on the entire external boundary of the
FEM sub-domain. Kamiya and Iwase [24] introduced an
iterative analysis using conjugate gradient and condensa-
tion. However, the conjugate gradient method is only
applicable to symmetric BEM formulation. Lin et al. [25],
and Feng and Owen [26] proposed a method which is
considered as a sequential form of the Schwarz Dirichlet—
Neumann method. The method is based on assigning an
arbitrary displacement vector to the interface for the BEM
sub-domain. Then, the energy equivalent nodal forces of the
solved interface tractions are treated as boundary conditions
for the FEM sub-domain to solve for the interfacial displa-
cements. The solution is achieved when these two sets of
displacements converge. Elleithy and Al-Gahtani [27]
presented an overlapping iterative domain decomposition
method for coupling of the FEM and BEM. The domain
of the original problem is subdivided into a FEM sub-
domain, a BEM sub-domain, and a common region, which
is modeled by both methods.

To the best of the authors’ knowledge, the existing
iterative domain decomposition methods for coupling the
FEM and BEM, did not consider the case of multi-domain
coupling or those with very complicated geometry.
However, it is possible to extend the existing iterative
methods to account for such cases. Also, it is not out of
place to mention that, all of the existing iterative coupling
methods require the definition of certain parameters, which
may be empirically selected. Some trial and error and
extensive experience are inevitable. Here comes the contri-
bution of this paper where we establish the convergence
conditions of the iterative method presented by Lin et al.
[25] and Feng and Owen [26]. We also provide a simple
guide for the choice of such parameter.
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Fig. 1. Domain decomposition.

In the remainder of this section, we review the formula-
tion of the iterative domain decomposition coupling method
presented by Lin et al. [25] and Feng and Owen [26].

Consider Fig. 1, where the domain of the original
problem is decomposed into two sub-domains 02° and Q"
Now, let us define the following vectors (Fig. 1):

{ug) is the displacement in the BEM sub-domain, {uj}
the displacement on the BEM/FEM interface (but it is
approached from the BEM sub-domain), {u3} the displace-
ment in the BEM sub-domain except {ug},

(up) = ful.up]’

{uy} the displacement in the FEM sub-domain, {u}} the
displacement on the BEM/FEM interface (approached
from the FEM sub-domain), and {u?} is the displacement
in the FEM sub-domain except {uf},

T
F o
(ur) = {uf uf}
Similarly, one can define the traction and force

vectors for the BEM and the FEM sub-domains,
respectively.

Egs. (2) and (3) may be partitioned as follows:
Hy, le_{llg}_ [Gll G ]{tﬁ} @
| Hyy Hy, [(up Gy Gy [(tg

Ky Klz_{ug} {ff} (5)
| Ky Ky [(ur fL
At the interface, the compatibility and equilibrium

conditions are

fup} = {up} eI’ (6)

L1+ Mty =0T’ (7)

where [M] is the converting matrix due to the weighing of
the boundary tractions by the interpolation function on the
interface.

The iterative coupling method [25,26] can be summarized
as follows:

1. The problem domain is subdivided into two sub-domains
that are well behaved and solvable and are modeled by
the FEM and BEM methods.
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2. Set initial values of {u’} at the interface, i.e. {ug} =0.

3. Consider the BEM sub-domain and solve Eq. (4) for the
traction {t} at the interface.

4. The corresponding nodal forces on the interface for the
FEM sub-domain can be determined using Eq. (7).

5. Solve for the displacements at the interface for the finite
element sub-domain, {u}}, using Eq. (5)

6. Check for convergence at the interface, i.e.

1 1
b1} — ui. i
<
[Hu,. I

where € is a predefined tolerance. If convergence is
achieved then stop, if not, for the next iteration set
fuh,1} = (1 — o)fup,} + ofuf,}, where « is a relaxa-
tion parameter to speed up convergence.

7. Repeat steps 3 to 6 until convergence is achieved.

4. Convergence of the iterative method

In this section, we wish to investigate the convergence of
the iterative method depicted in Section 3. We shall estab-
lish that under certain conditions, and for sufficiently small
a, the iterations

fuhi} = (0 = @fuh,} + o} ®)

will converge to the true value of {u'}. Our findings will be
confirmed by the numerical example in Section 5.

After applying boundary conditions and rearranging, Eq.
(4) can be written in the following form:

{Xg}_[An AIZ]{CB} ©
ts Ay Ay (v
where X5 are the boundary unknowns in the BEM sub-

domain except at the interface. Similarly one can apply
boundary conditions and rearrange Eq. (5) to obtain

ub Fi, Fpp |(Cr

Tt= , (10)
Ug F Fyp fr
Note that Cz and C are vectors of constant values. Let us

rewrite the second set of equations (9) and (10), respec-
tively, as

ty = ApCp + Ajuj (11
and
up = F;:Cp + Fyfy (12)

Eliminating f% from Eq. (12) using Eq. (7), yields
up = F.Cp — F Mt (13)

Similarly, eliminating th from Eq. (13) using Eq. (11),

yields
u = Cuh + ¢ (14)
where
C=-F,MA,
and
¢ =F;pCr — F;MA;;Cy
Substituting for u},n in Eq. (8), using Eq. (14), we get
w1 = [(1 — @l + aClup, + ac (15)
Now, Eq. (15) represents an iterative method of the form:
X,+1 =DX, +d, (16)

which converges if and only if the spectrum o(D,) of the
matrix D, is contained in the unit sphere B(0, 1) in the
complex plane [31], i.e. Eq. (15) converges if and only if

o((1 — o)l + «C) C B(O, 1)
or

0(aC) C B(a — 1,1)

or

a(C) C B(l - l l)
o

o

The sphere is centered at Z = 1 — (1/a) with the radius
1/a.

Next we will show that if A = x + iy € o(C) with x < 1,
then A € B(1 — (1/a), 1/a) for some «. For this we have to
satisfy the inequality:

1 1
)=
a el

or

1\1? 1
S
a [64

which upon simplification, gives
2(1 —
(- +y2 < 2220 a7
o

Note that inequality (17) immediately implies the neces-
sary condition x < 1. Inequality (17) can be rewritten as

2(1 — x)
(1= xP +)?
The foregoing discussion shows that if A} =x; +
iyy,..., Ay = xy + iyy are the eigenvalues of C, then
2(1 — x;
a < min % and
1=i=N [ (1 —xi) +y; (18)

<1, i=1,2..N
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are the necessary conditions for the convergence of the
iterative procedure.

Next we will show that for a proper choice of a one may
minimize the spectral radius of the iteration matrix ((1 —
a)l + aC), which we denote by p((1 — a)I + «C).

Let A' = (A; A,...A,) and 1' = (1 1...1), then
p(1 — )l + aC) = max {0 — a) + arl}

=i=N
= ||(1 —a)l + a)\”w

The problem now is to choose « such that |[(1 — @)1 +
aM|s is minimized. Due to the fact that |||, is not differ-
entiable, an explicit value for the optimum « is not readily
obtainable. However, noting that (1/~/N)[xl, = [l = [,
one can try to obtain a value of & that minimizes the Eucli-
dean norm. If for such an @, it turns out that [(1 — &)1 +
@M, <1, then so will be the infinity norm and
consequently the spectral radius of our iteration matrix.
Proceeding with this idea let F(a) =|/(1 — @)1 + @\
then

2
2’

F'(a) =2Re(1"\ — 1)) + 2a|\ — 1||2 (19)

and
F"(a) = 2|A — 1J* > 0, i.e. the initial values (19) corre-
spond to minimum «. Now setting F'(a) = 0 we obtain

_Re(I'\ — 1)

A sufficient condition for convergence then is Fp;, < 1,
for in this case. Moreover, this condition implies that &
necessarily satisfies Eq. (18).

The two conditions for convergence depicted by Eq. (18)
give rise to a set of factors that control convergence. The
most important one is the selection of the parameter «,
which greatly affects convergence of the iterative method.
Beyond the values given by Eq. (18), the iterative method
will not converge. Also from the discussion given in this
section, one can conclude that convergence is dependent on
the eigenvalues of the matrix C, which in turn are dependent
on K, H, G and M matrices. This indicates that convergence
is dependent on the mesh density of the problem sub-
domains, specified boundary conditions, and the geometri-
cal and material properties of the sub-domains. Although,
the initial guess is not involved in the conditions for
convergence it affects the speed of convergence of the
scheme, as will be illustrated by the numerical example
in Section 5.

5. Illustration

Conditions for convergence were established theoreti-
cally in Section 4. Also we demonstrated those factors
that affect the convergence of the iterative method. Through
a simple example, we wish to fix ideas presented in the
previous section. It should be noted that the BEM/FEM
coupling approach is versatile and capable of handling
more complex problems than the example presented in
this section, which only serves to clarify some issues related

The steel cantilever beam shown in Fig. 2 is analyzed,

10 units
x

a= (20)
In =1
and
2
F. =N— w Q1) to the iterative method.
min 2
In—1]
y
A
20*108 units
@ » A
4 —>
= —>
—>
/]
—>
-~ —
4 >
/Q > \ 4
20 units

E=29*108 units
v=0.3
t=1.0 unit

Fig. 2. Cantilever beam subjected to uniform loading.
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(@)

(©

(b)

Fig. 3. BEM/FEM discretization.

and the results are compared with those from elasticity
theory. The cantilever beam is subjected to a uniform tensile
loading of 20 X 10 units at its free end, and is considered to
be in a state of plane stress with an elastic modulus, E =
29 % 10° units, and a Poison’s ratio v = 0.3. The beam is 20
units long and 10 units high, and is assumed to be weight-
less. The results obtained from the coupled BEM/FEM
method using different meshes as shown in Fig. 3 match
very well with the analytical solutions.

Fig. 4 illustrates the effect of the mesh size on the conver-
gence of solution. For mesh (a), o should be within the
range of 0.03—0.72, whilst the range for mesh (c) is 0.03—
0.47. Beyond these values the scheme will not converge.

600

The range from which the relaxation parameter to be chosen
becomes narrower with a denser mesh of the computational
sub-domains. Needless to say that, an optimal value of «
exists as this is a common knowledge. Two very important
issues are to be observed over here. Although it is the same
problem, different optimal values of « exist for different
FEM and BEM meshes. More importantly, one should be
careful while choosing the value of «, as some values will
not assure the convergence of the scheme.

In order to address the effect of the geometry of the
computational sub-domains on solution convergence, the
problem is investigated for different relative areas of
the finite and boundary element sub-domains, as shown in

500 —

400 —

300 —

200 —

Number of lterations

100 —

—=a—— Mesha
——— Meshb

—x— Meshc¢

0.4 0.6 0.8
a

Fig. 4. Effect of the mesh density on solution convergence.
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G ag

(©

(e)

| a-—{ ag

(d)

Fig. 5. Relative BEM to FEM computational sub-domains: (a) ag/ar = 7; (b) aglar = 3; (¢) aglar = 1; (d) aglar = 1/3; (e) aglar = 1/7.

Fig. 5. From Fig. 6, it is observed that the minimum
applicable range of « is for problems having equal finite
and boundary element areas, ag/ar = 1.. As ag/ar increases
or decreases, the applicable range of « increases.

Using mesh (b) of Fig. 3, the problem is investigated for

different relative values of modulus of elasticity for the
BEM and FEM sub-domains, Ep/Er. Fig. 7 indicates that
as Ep/Er decreases, the range from which the parameter o
to be chosen increases. This range reduces to a very narrow
one for higher values of Ep/Ef.

1000

Es/E=1

800 —

600 —

400 —

Number of Iterations
\

200 —

D(B/D(F
—_—.,— 7
—e— 17
—— 3
—a— 1/3

—— 1

0.4 0.6 0.8

Fig. 6. Effect of the geometry of the computational sub-domains on «.
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Number of lterations

600
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Fig. 8. Boundary conditions.

0 0.4 0.8 1.2 1.6
a
Fig. 7. Effect of material properties of the sub-domains on «.
y
w=Px/E u,=-5VP/E
| FEM BEM u =20P/E
sub-domain sub-domain u,=-vPy/E
» X
w=PXE u,=5P/E
Dirichlet BC
y
A
t,=t,=0
| FEM BEM : tl =20* 103 units
] sub-domain sub-domain Ly 1, =0
» X
_>
_’
_’
t,=t,=0
Neumann BC
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Fig. 9. Effect of boundary conditions on «.

Using the two equivalent different types of boundary
conditions as shown in Fig. 8, mesh (b) of Fig. 3 is also
analyzed. As can be seen from Fig. 9, different types of
boundary conditions results in different optimum value
and applicable range of the parameter «.

In order to investigate the effect of the initial guess of the
unknowns at the interface, the same problem is reinvesti-
gated using mesh (b) of Fig. 3 and different values of u’ as
can be seen in Fig. 10. The results show that, the arbitrary
assigned initial values of u’ only affect the speed of conver-
gence. Obviously, a more reasonable guess yields less
number of iterations. The allowable range will remain as
0.03-0.53 for this problem. It is reasonable to start with
values of zeros at the interface for the initial displacements,
which seems convenient as well as, appropriate from the
physical realization.

It should be noted that the numerical results obtained in
this section match with those of Eq. (18).

600

6. Selection of the relaxation parameter

The theoretical analysis and benchmark example
presented in Sections 4 and 5, respectively, clearly identify
the factors that control the convergence of the FEM/BEM
iterative coupling method. These factors include the
geometrical and material properties of the FEM and BEM
sub-domains, specified type of boundary conditions of
the sub-domains, and the mesh density of the FEM and
BEM computational sub-domains. The most important
issue regarding convergence is the selection of the para-
meter «. Beyond the values given by Eq. (18) the iterative
method does not converge.

It is also concluded that the initial guess is not involved in
the conditions for convergence and it has an insignificant
effect on the speed of convergence. A further examination of
Eq. (18) indicates that the optimum value of « is indepen-
dent on the initial guess of the displacements on the FEM/

500

400

300

200

Number of Iterations

100

Initial Guess
——a— 0.

—— 0.5*Exact

—=— 0.75*Exact

0.6

Fig. 10. Effect of the initial guess on .
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BEM interface. This is also confirmed by the benchmark
example. It is reasonable to start with values of zeros for
the initial displacements on the interface.

For the selection of the parameter «, Eqgs. (18) and (20)
should be utilized. However, it is very important to note
that, by the complicated operators in Eq. (18) the behavior
of the parameters for the solution convergence cannot be
shown easily. In this paper, we established the convergence
conditions. We also elaborated on the factors, which affect
the solution convergence. The following guidelines may be
helpful in selecting the parameter «:

1. For combinations of low values of the relative sizes of the
BEM to FEM sub-domains, and high values of the
relative stiffness of the BEM to FEM sub-domains,
the parameter « is assigned a relatively low value.

2. For combinations of high values of the relative sizes of
the BEM to FEM sub-domains, and low values of the
relative stiffness of the BEM to FEM sub-domains, the
applicable range of a becomes wider.

Fortunately, most of the FEM/BEM coupling applications
satisfy the second case and therefore, & may be assigned a
relatively higher value.

7. Conclusions

Unlike traditional methods of coupling, the concepts
behind the iterative FEM/BEM coupling method have
physical meaning and are easy to comprehend. In this
paper, we established the general convergence conditions
of the iterative method for elasticity problems. Results
were verified through a simple numerical example. We
also demonstrated those factors that affect solution conver-
gence. Unlike the previous belief that the relaxation
parameter is only needed to speed up the convergence, the
theoretical analysis shows that this parameter controls the
convergence of the iterative coupling method. Another
interesting finding is that the derived convergence condi-
tions do not involve the initial guess of the unknowns at
the interface. This fact was also confirmed by the results
of the numerical example. The initial guess had to do with
the rate of convergence only.

The present study will be extended to consider problems
involving complex geometry and material properties.
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