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Abstract

An overlapping iterative domain decomposition approach for the coupling of the finite element method (FEM) and the boundary element
method (BEM) is presented in this paper. In this proposed method, the domain of the original problem is subdivided into a FEM sub-domain
and a BEM sub-domain, such that the two sub-domains partially overlap over a common region. The common region is modeled by both
methods. A brief discussion on the existing iterative coupling methods and their limitations are given in the first part of this paper. In the
second part, the proposed overlapping method is described and the convergence conditions are presented. Two numerical examples are given
to demonstrate the capability of the proposed method for handling cases where the Neumann boundary conditions are specified on the entire
external boundary of the FEM or BEM sub-domains.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The finite element method (FEM) and the boundary
element method (BEM) are well known as powerful numer-
ical techniques for solving a wide range of problems in
applied science and engineering. Each method has its own
advantages and disadvantages, so that it is desirable to
develop a combined FEM/BEM technique, which makes
use of their advantages and reduces or completely elimi-
nates their disadvantages, and to use the combined techni-
que in situations where it is appropriate. The first proposed
coupling formulation was presented by Zeinkiewicz and co-
authors [1]. Subsequent contributions came from Atluri and
Grannel [2] and Brebbia and Georgion [3]. Unfortunately,
the FEM and BEM lead to very different kinds of systems
that cannot be linked as they stand. The conventional
coupling methods employ an entire unified equation for
the whole domain by altering the formulation of one of
the methods to make it compatible with the other. There
are many variations of the conventional coupling methods.
See, e.g. Refs. [1–18] not to mention many others.

More recently, coupling the BEM and FEM has been
achieved through the iterative domain decomposition meth-
ods. In these coupling methods there is no need to combine

the coefficient matrices of the FEM and the BEM sub-
domains, as required in most of the conventional coupling
methods. Separate computing for each sub-domain and
successive renewal of the variables on the interface of
both sub-domains are performed to reach the final conver-
gence. A second advantage is that different formulations for
the FEM and BEM can be adopted as base programs for
coupling the computer codes only.

Gerstle et al. [19] presented a solution method, which was
iterative in nature. In each iteration the sub-domains were
analyzed independently by applying trial displacements to
degrees of freedom on the interface. The conjugate gradient
domain decomposition solver was used to predict a new set
of trial interfacial displacements for the next iteration. Their
method, however, was only applicable to the symmetric
BEM formulation. Perera et al. [20] presented a parallel
method based on the interface equilibrium of Steklov Poin-
care. Kamiya et al. [21] employed the renewal methods
known as Schwarz Neumann–Neumann and Schwarz
Dirichlet–Neumann methods. It should be noted, however,
that the above methods presented in Refs. [20,21] are not
applicable for problems where Neumann boundary condi-
tions are specified on the entire external boundary of the
FEM sub-domain as will be explained later. Kamiya and
Iwase [22] introduced an iterative analysis using conjugate
gradient and condensation, which again had the same limita-
tion of being applicable only to the symmetric BEM formu-
lation. Computations for all the above iterative methods

Engineering Analysis with Boundary Elements 24 (2000) 391–398

0955-7997/00/$ - see front matterq 2000 Elsevier Science Ltd. All rights reserved.
PII: S0955-7997(00)00014-X

www.elsevier.com/locate/enganabound

* Corresponding author. Tel.:1 966-03-860-2900; fax:1 966-3-860-
2911.

E-mail address:hqahtani@kfupm.edu.sa (H.J. Al-Gahtani).



were performed in parallel. Lin et al. [23] and Feng and
Owen [24] proposed a method similar to the Schwarz
Dirichlet–Neumann method. The method was based on
assigning an arbitrary displacement vector to the interface
of the BEM sub-domain. Then, the energy equivalent nodal
forces of the obtained interface tractions were treated as
boundary conditions for the FEM sub-domain to solve for
the interfacial displacements. The procedure was iterated
until convergence is achieved.

In this paper, we review and discuss the limitations of
some of the available iterative coupling methods. We also
propose an overlapping iterative coupling method that over-
comes these limitations.

2. Iterative coupling methods

For simplicity, let us Consider the 2-D region of Fig. 1,
which is governed by the Laplace equation, i.e.Ki7

2u� 0
in V i , whereKi is the material property in the sub-domain
V i andu is the potential. The boundary conditions are such
that the potentialu, the fluxq� K7u or their combination is
prescribed at each point on the boundary. The decomposed
portions are modeled using the BEM and FEM. Now, let us
define the following vectors (Fig. 1):

u I
B : potential on the FEM/BEM interface, approached

from the BEM sub-domain
uB

B : potential in the BEM sub-domain exceptuI
B

uB � �uB
B; u

I
B�T

uI
F : potential on the FEM/BEM interface, approached

from the FEM sub-domain
uF

F : potential in the FEM sub-domain exceptuI
F

uF � �uF
F;u

I
F�T

Similarly, one can define the flux and integrated flux vectors
for the BEM and the FEM sub-domains, respectively. The

corresponding boundary integral equation for the BEM sub-
domain can be written in sub-structured form as

H11 H12

H21 H22

" #
uB

B

uI
B

" #
�

G11 G12

G21 G22

" #
qB

B

qI
B

" #
�1�

where H and G are influence coefficient matrices. After
solving for the unknowns in Eq. (1), a potential vector inside
the domain can be obtained as

u� Hp
11 Hp

12

Hp
12 Hp

22

" #
uB

B

uI
B

" #
1

Gp
11 Gp

12

Gp
21 Gp

22

" #
qB

B

qI
B

" #
�2�

For the FEM sub-domain, the assembled element equations
are given by

K11 K12

K21 K22

" #
uF

F

uI
F

" #
� f F

F

f I
F

" #
�3�

whereK is the stiffness matrix for the system. At the inter-
face, the compatibility and equilibrium conditions are

uI
B � uI

F [ G I
; �4�

f I
F 1 �M�{ qI

B} � 0 [ G I �5�
whereM is the converting matrix due to the weighing of the
boundary fluxes by the interpolation function on the inter-
face. It should be noted that similar coupling equations can
be obtained for the elasticity problem by substituting the
displacement and force vectors for the potential and inte-
grated flux vectors, respectively. The procedures for solving
the above equations using the available non-overlapping
iterative coupling methods are given below.

2.1. Parallel Schwarz Neumann–Neumann method

In this method, the flux values (Neumann data) are
assumed simultaneously on the interface of each sub-
domain [21]. Then, the computations for FEM and BEM
are performed in parallel as described below:
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1. Set initial valuesqI
B;0 � �q and f I

F;0 � 2MqI
B;0

2. Forn� 0; 1;2;…; do

Solve
H11 H12

H21 H22

" #
uB

B

uI
B;n

24 35 � G11 G12

G21 G22

" #
qB

B

qI
B;n

24 35
K11 K12

K21 K22

" #
uF

F

uI
F;n

24 35 � f F
F

f I
F;n

24 35
Get uI

B;n and uI
F;n

Apply qI
B;n11 � qI

B;n 1 b�uI
F;n 2 uI

B;n�

f I
F;n11 � 2MqI

B;n

whereb is a relaxation parameter.

Until
iuI

B;n11 2 uI
B;ni

iuI
B;n11i

, e �given tolerance�

A drawback of this method is that it requires a parameterb ,
the selection of which requires some trial and error and deep
experience. Another major drawback is that the method
produces non-unique solutions for certain problems where
Neumann boundary conditions are specified on the entire
external boundary of the FEM or BEM sub-domain.

2.2. Parallel Schwarz Dirichlet–Neumann method

In this method [22], the potential (Dirichlet data) is
assumed on the BEM interface while the flux (Neumann
data) is assumed on the FEM interface. The computations
for FEM and BEM are performed in parallel. The iterative
method can be described as follows:
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1. Set initial valuesuI
B;0 � �u andf I

F;0 � �f :
2. Forn� 0;1;2;…; do

Solve
H11 H12

H21 H22

" #
uB

B

uI
B;n

24 35 � G11 G12

G21 G22

" #
qB

B

qI
B;n

24 35
K11 K12

K21 K22

" #
uF

F

uI
F;n

24 35 � f F
F

f I
F;n

24 35
Get qI

B;n and uI
F;n

Apply uI
B;n11 � �1 2 a�uI

B;n 1 auI
F;n

f I
F;n11 � 2MqI

B;n

wherea is a relaxation parameter.

Until
iuI

B;n11 2 uI
B;ni

iuI
B;n11i

, e �given tolerance�

The method may not be suited for problems where
Neumann boundary conditions are specified on the entire
external boundary of the FEM sub-domain due to the same
reason given earlier.

2.3. Sequential Schwarz Dirichlet–Neumann method

The iterative method can be described as follows [23,24]:

1. Set initial valuesuI
B;0 � �u:

2. Forn� 0;1;2;…; do

Solve
H11 H12

H21 H22

" #
uB

B

uI
B;n

24 35 � G11 G12

G21 G22

" #
qB

B

qI
B;n

24 35
Get qI

B;n

Solve
K11 K12

K21 K22

" #
uF

F

uI
F;n

24 35 � f F
F

2MqI
B;n

24 35
Get uI

F;n

Apply uI
B;n11 � �1 2 a�uI

B;n 1 auI
F;n

wherea is a relaxation parameter.

Until
iuI

B;n11 2 uI
B;ni

iuI
B;n11i

, e �given tolerance�

The method has the same limitation as that of the parallel
Shwarz Dirichlet–Neumann method.

3. An overlapping iterative domain decomposition
method

It is clear from the previous section that the parallel
Neumann–Neumann method may not be suited for
problems where the Neumann boundary conditions are
specified on either the entire external boundary of the
FEM or BEM sub-domains. Also, the other two methods
are not suited for problems where the Neumann boundary
conditions are specified on the entire external boundary of
the FEM sub-domain.

In this section we propose an overlapping domain
decomposition method that can handle such situations.
The domain of the original problem is subdivided into
FEM and BEM sub-domains, such that the two sub-
domains partially overlap over a common region that
is modeled by both methods (Fig. 2). In general, the
size of the common region is chosen arbitrarily.
However, its minimum width should not be too small
in order to avoid the computation of singular boundary
integrals, but not too large to avoid the reduction in the
efficiency of the method, due to the increase in the number
of the coupling equations. A reasonable decision is to
choose a common region with a minimum width being
equal to the length of the boundary element on the BEM
interface. To describe the proposed method, let us define the
following vectors:

uI1
B : displacement onG I1 approached from the BEM sub-

domain
uB

B : displacement in the BEM sub-domain exceptuI1
B

uI2
B : displacement onG I2 calculated as internal points for

the BEM sub-domain

uB � �uB
B;u

I1
B �T

uI1
F : displacement onG I1 approached from the FEM sub-

domain
uI2

F : displacement onG I2 approached from the FEM sub-
domain
uF

F : displacement in the FEM sub-domain exceptuI1
F and

uF � �uF
F; u

I1
F ;u

I2
F �T

Similarly, one can denote the BEM flux vector byqB
B andqI1

B

and FEM integrated flux vectors byf F
F , f I1

F and f I2
F :

The proposed iterative method can be described as
follows:

1. Set initial valuesuI1
B;0 � �u:

2. Forn� 0;1; 2;…; do

Solve
H11 H12

H21 H22

" #
uB

B

uI1
B;n

24 35 � G11 G12

G21 G22

" #
qB

B

qI1
B;n

24 35
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Get qI1
B;n and the boundary unknowns

Solve

uI2
B;n �

Hp
11 Hp

12

Hp
12 Hp

22

" #
uB

B

uI1
B;n

24 35 1
Gp

11 Gp
12

Gp
21 Gp

22

" #
qB

B

qI1
B;n

24 35

Solve

K11 K12 K13

K21 K22 K23

K31 K32 K33

2664
3775

uF
F

uI1
F;n

uI2
B;n

26664
37775 �

f F
F

f I1
F

f I2
F

26664
37775

Get uI1
F;n

Apply uI1
B;n11 � �1 2 a�uI1

B;n 1 auI1
F;n

wherea is a relaxation parameter

Until
iuI1

B;n11 2 uI1
B;ni

iuI1
B;n11i

, e �given tolerance�

The current proposed method avoids the prescription of
Neumann boundary conditions on the interfaceG I1 or G I2

and therefore it overcomes the problem encountered in the
previous iterative methods.

Now we wish to conduct a convergence analysis of the
proposed overlapping iterative method. After applying
boundary conditions, rearranging and conducting a series
of matrix operations, the vector of unknownsuI2

B;n is
obtained as

�uI2
B;n� � �A11 A12�

CB

uI1
B;n

" #
�6�

Similarly for the FEM one can apply boundary conditions,
rearrange and perform a series of matrix operations to obtain

uF
F

uI1
F;n

uI2
F;n

26664
37775 �

F11 F12 F13

F21 F22 F23

0 0 1

2664
3775

CF
F

CI1
F

uI2
B;n

26664
37775 �7�

Note thatCB, CF
F andCI1

F are vectors of known values. Using
the second row of Eq. (7) and substituting in Eq. (6), gives

uI
F;n � CuI1

B;n 1 c �8�
where

C � F23A12

and

c� F21C
F
F 1 F22C

I1
F 1 F23A11CB

Substituting foruI
F;n in the iterationsuI1

B;n11 � �1 2 a�uI1
B;n 1
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Fig. 3. Example 1 using the sequential Dirichlet–Neumann method.

Table 1
Applicable range and optimuma

Relaxation parameter

K2/K1 a (sequential
Dirichlet–
Neumann method)

a (overlapping iterative method)

0.1 Range 0.02–1.8 0.02–3.62
Optimum 0.9 1.81

0.5 Range 0.02–1.32 0.02–8.0
Optimum 0.66 4.0

1.0 Range 0.02–0.98 0.02–11
Optimum 0.5 5.5

2.0 Range 0.02–0.64 0.02–14
Optimum 0.34 7.0

8.0 Range 0.02–0.20 0.02–18
Optimum 0.12 9.0



auI1
F;n; gives

uI1
B;n11 � ��1 2 a�I 1 aC�uI1

B;n 1 ac �9�

which has the same form as obtained in a previous investi-
gation [25]. We conclude that ifl1 � x1 1 iy1;…; lN �
xN 1 iyN are the eigenvalues ofC, then,

a , min
1#i#N

2�1 2 xi�
�1 2 xi�2 1 y2

i

( )
xi , 1; i � 1;2;…;N

�10�

are the necessary conditions for the convergence of the
overlapping iterative coupling method. The optimuma is
obtained as

�a � 2
Re�1T�l 2 1��

il 2 1i2 �11�

4. Numerical examples

In this section we give two numerical examples that show
the applicability of the overlapping iterative coupling
method. It should be noted that the proposed method is
versatile and capable of handling more complex problems
than the examples presented in this section.

4.1. Example 1

Consider the simple case of a potential flow in a rectan-
gular domain (Fig. 3). For the Sequential Dirichlet–
Neumann method, the rectangular domain is decomposed
to the FEM and BEM sub-domains. The problem is modeled
using 30 linear boundary elements and 50 linear quadrilat-
eral finite elements. The geometry of the problem is such
that 0# x # a and 0# y # b while the boundary condi-
tions areu�0; y� � 0; u�a; y� � 200 and zero flux elsewhere.
The values ofa1, a1 and K1 are fixed to unity. The same

W.M. Elleithy, H.J. Al-Gahtani / Engineering Analysis with Boundary Elements 24 (2000) 391–398396

Fig. 4. Example 1 using the overlapping iterative method.

Fig. 5. Example 1 using the overlapping iterative method (Neumann boundary conditions are specified for the entire FEM sub-domain).



problem is reinvestigated with the overlapping iterative
method with an overlapping distanceac � 0:1 (Fig. 4).
The problem is modeled using 30 linear boundary elements
and 55 linear quadrilateral finite elements. Due to the
simplicity of the problem, both methods agree very well
with the exact solution and therefore, the results are not
given here. Since the parametera is an important parameter
for all iterative coupling methods, especially for problems
with very dissimilar materials [25], a comparative analysis
is performed with different values ofK2/K1 using the two
methods. The optimum value and the applicable range of the
parametera for both methods are given in Table 1. The
results in Table 1 indicate that the overlapping iterative
method provides a wider applicable range ofa , which is
more advantageous. As an example, the applicable range is
0.02–0.2 for K2=K1 � 8 using the sequential Dirichlet–
Neumann method as compared to 0.02–18 using the over-
lapping iterative method.

In order to show the applicability of the new method to
problems involving Neumann boundary conditions on the
entire external boundary of the FEM sub-domain, let us

investigate the same problem with the following boundary
conditions: q�0; y� � 2100; u�a; y� � 200 and zero flux
elsewhere (Fig. 5). The geometry and the material properties
are such that,a1, a2, K1 and K2 are fixed to unity. The
problem considered here cannot be solved using any of
the iterative methods presented in Section 2. The overlap-
ping iterative method gives a solution for such a case that is
in good agreement with the exact solution. The range for the
parametera is obtained as 0.02–20 with an optimum value
of 10.

4.2. Example 2

Consider an elasticity problem where the excavation of a
circular tunnel opening in a geological medium is modeled.
The tunnel is deeply inserted in an intact rock. The plane
strain condition is assumed to prevail. The radius of the
tunnel R is taken as 100 units. The material properties
employed are as follows: Young’s modulusE � 2:1 × 104

units, Poisson’s ration � 0:18: The problem was modeled
using 32 linear boundary elements and 256 linear quadrilat-
eral finite elements (Fig. 6). The stress condition in the
geological medium is assumed to be hydrostatic and the
stress is taken to be 10 units. At the boundary of the tunnel,
the forces corresponding to the in situ state of stress condi-
tion are computed at the nodal points and applied in the
opposite direction to simulate the excavation of the opening.

Fig. 7 shows an excellent agreement between the results
of the overlapping iterative method and the exact solution
for the radial displacements. It should be noted that this
problem cannot be solved using the iterative methods
presented in Section 2 due to the reasons explained earlier.

5. Conclusions

An overlapping iterative domain decomposition method
for coupling the FEM and BEM is presented. Unlike the
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Fig. 6. Discretization for the tunnel problem.

Fig. 7. Radial displacement for the tunnel problem.



previous iterative coupling methods, the proposed one has
the capability of handling problems where Neumann bound-
ary conditions are specified on the entire external boundary
of the FEM or BEM sub-domains. In addition, the proposed
method has the advantage of providing a wider range for
selecting the relaxation parameter, which is an important
factor for the convergence of the iterative methods. The
proposed method is tested through two simple numerical
examples. The present study will be extended to consider
problems having more complicated geometry and material
properties.
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