BOUNDARY ELEMENT COMMUNICATIONS: AN INTERNATIONAL JOURNAL VOL, 13, NO, 1, 2002 2]

ITERATIVE COUPLING OF BOUNDARY AND FINITE
ELEMENT METHODS IN ELASTO-PLASTICITY

W. M. ELLEITHY' & H. J. AL-GAHTANI*
'Department of Mechanical Systems Engincering, Shinshu University, Nagano 380-8553, Japan.
* Civil Enginecring Department, KFUPM, Dhahran 31261, Saudi Arabia.

ABSTRACT
The possibility of extending the sequential Dirichlet Neumann boundary element-finite element coupling
method to elasto-plasticity is presented in this paper. The successive computation of the displacements and
forces/tractions on the interface of the finite element and boundary element sub-domains is performed
through an iterative procedure. The procedure is implemented in a computer program, which is tested
through numerical examples. The solution of the present method is compared to the conventional finite
element method in terms of accuracy and CPU-time.

1 INTRODUCTION
The finite element method (FEM) and the boundary element method (BEM) are well known as
powerful numerical technique for solving wide range of problems in applied science and
engineering. Both the FEM and the BEM have their own range of applications where they are
most efficient.

For certain categories of problems, neither the BEM nor the FEM is best suited and it is natural
to attempt to couple these two methods in an effort to create a finite element-boundary element
method (FEBEM) that combines all their advantages and reduces their disadvantages.
Unfortunately the usual derivations for the BEM gives rise to a set of equations, which are not
directly compatible with the FEM equations. The systems of equations, produced by the two
methods, are expressed in terms of different variables and cannot be linked as they stand.
Conventionally coupling the FEM and the BEM is achieved by combining the discretized
equations for the BEM and FEM sub-domains, see, i.e., references [1-8] not to mention many
others. However, the algorithm for constructing the entire equation is highly complicated. In order
to overcome the stated inconvenience, domain decomposition coupling procedures were
developed [9-15] where there is no need to combine the coefficient matrix for the FEM and BEM
sub-domains. In these coupling algorithms, separate computing for each sub-domain and
successive renewal of the variables on the interface of the both sub-domains are performed to
reach the final convergence. Gerstle et al. [9] and Perera et al. [10] presented solution schemes,
which utilize the conjugate gradient method and the Schur complement, respectively, for the
renewal of the unknowns at the interface, Kamiya et al, [11] employed the renewal schemes
known as Schwarz Neumann-Neumann and Schwarz Dirichlet-Neumann. Kamiya and Iwase [12]
introduced an iterative analysis using conjugate gradient and condensation. Lin et al. [13], and
Feng and Owen [14] presented a method, which is considered as a sequential form of the Schwarz
Dirichlet-Neumann method, Elleithy and Al-Gahtani [15] presented an overlapping domain
decomposition method for coupling of the FEM and BEM. The domain of the original problem is
subdivided into a FEM sub-domain, a BEM sub-domain, and a common region, which is modeled
by both methods.

The above iterative coupling methods, however, are only limited to linear problems. The
objective of this paper is to extend the application of the sequential Schwarz Dirichlet-Neumann
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iterative coupling method to elasto-plasticity. Applications in infinite domain elasto-plasticity are
presented. The conventional FEM computations are also performed, and a critical comparison of
the results is made.

2 ITERATIVE COUPLING APPROACH IN ELASTO-PLASTICITY
In this section we consider the extension of the sequential Schwarz Dirichlet-Neumann iterative
coupling method presented by Lin et al. [13], and Feng and Owen [14] to elasto-plasticity. The

domain of the original problem € is decomposed into two sub-domains Q° and Q. Now, let
us define the following vectors (Figure 1):

{uy}: displacement in the BEM sub-domain,

{H;}: displacement on the BEM/FEM interface (but it is approached from the BEM sub-
domain),

{Ilg }: displacement in the BEM sub-domain except {u; ],
s 1V
{uy}= [".! r"l;
{HF }: displacement in the FEM sub-domain,
u;. : displacement on the BEM/FEM interface (approached from the FEM sub-domain), and
. displacement in the FEM sub-domain except {ur}. }
Forlr
{up}= {"r ="r}
Similarly, one can denote the BEM traction by rf and 1‘; and FEM force vectors by f ;

and f} . Disregarding body forces, the assembled boundary element equations for an elastic
region are given by:

[Hu H.E,] u:HG” G”Ht:} o
H, H,||u Gy, G|\t ;

For an elasto-plastic analysis, the incremental form of the FEM equations can be written as:
Ky Ky || Aug Af ¢

It should be noted that for each load increment, Equations (2) are nonlinear and therefore are
solved iteratively, At the interface, the compatibility and equilibrium conditions should be
satisfied, i.e.,

u; =[u;’,} eIV &)
,{ +[M][t;]=l} = ol (4)
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where, [M ] is the converting matrix due to the weighing of the boundary tractions by the

interpolation functions on the interface. The iterative coupling method can be summarized as
follows:

1. Given the initial guess fu} = {i}.
2, Farn=0,1 2,..... , do until convergence
Solve Equation (1) and get {t; ,, }

Solve Equation (4) and obtain {fé"]
For the FEM region
Fori=1 2, ....... , specified number of increments

Solve Equation (2) for {Ay;- d L
Apply {"i.m L = L‘;u },, + {A"fu ]..
Obtain [u_{-l,,}
Apply M, w+l }=(1-¢)M, u}"'” {"fr n]

where @ is a relaxation parameter to accelerate and/or speed up convergence.

/— FEM/BEM Interfnce
/

FEM BEM
Sub-domnin Sub-domain

Domain of the Original Problem

=
o i

o=t ot ¥ AR A
FEM Modeling BEM Modaling

Figure 1: Domain Decomposition
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3 APPLICATIONS
Consider the excavation of a circular tunnel opening in a geological medium. The tunnel is deeply
inserted in an intact rock. The soil is governed by the true Drucker-Prager yield criterion without
any hardening effect. The plane strain condition is assumed to prevail. The radius of the tunnel R
is taken as 100 units, The material properties employed are as follows: Young's modulus
'.E;Z. ]:;E" units, Poisson's ratio v = (.18, Cohesion ¢ = 10 units and angle of internal friction

3.1 Elastic Analysis

The purpose of this analysis is to compare the results of the present method with the available
exact solution, The stress condition in the geological medium is assumed to be hydrostatic and the
stress is taken to be 10 units. First the excavation of tunnel is analyzed with the FEM. In this case
the infinite domain is truncated at 4.3, 8.7 and 15 times the radius of the tunnel from the center of
the tunnel opening. At the boundary of the tunnel, the forces corresponding to in-situ state of
stress condition are computed at the nodal points and applied in the opposite direction to simulate
the excavation of the opening. The problem is then analyzed with the FEBEM. The FEBEM
interface is set at 3.6 times the radius of the tunnel. Figure 2 shows the discretization with the
FEM and FEBEM. Table 1 shows the number of elements and CPU-time required for the analysis
with FEM and FEBEM. The difference in the CPU-time required for analysis is considered to be
marginal.

Figure 2: FEM and FEBEM Discretization for the Tunnel
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Table 1: Comparison of Input Data and CPU-Time for Elastic Analysis of the Tunnel

Method Boundary Number of Number of CPU-time
Distance Finite Elements Boundary Elements in Sec.
FEM 43R 288 - 2
FEM BTR 448 - 3
FEM I5R 608 - 4
FEBEM 36R 256 32 3

Figure 3 shows the radial displacements by the FEM and FEBEM as compared to closed form
solution. It may be observed that as the extent of boundary distance for the FEM increases, better
accuracy is achieved. Table 2 shows the displacement at the boundary of the tunnel %, and the
percentage error compared to exact solution, The results clearly show the advantage of using the
FEBEM in terms of accuracy. Another advantage, which cannot be seen from the results, is the

incredible reduction of data preparation required for the FEBEM analysis as compared with the
FEM.

Table 2: Displacement at the Boundary of the Tunnel for Elastic Analysis

Method Boundary Up % Error
Distance _R?'
Exact & 0.0562 x10-2 =
FEM 43R 0.0488 x10-2 13.17
FEM 8.7R 0.0542 x10-2 1.56
FEM I5R 0.0554 x10-2 1.42
FEBEM I6R 0.0565 x10-2 0.53
0,06
————— Exact
) 5 ——=—— FEM/BEM
i FEM (15R)
o 004 — A ——a—— FEM {B,7TR)
p ";-:.1 ——>—— FEM [4.3R)
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Figure 3: Radial Displacement for Elastic Analysis of the Tunnel
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3.2 Elasto-Plastic Analysis

The elasto-plastic analysis has been used to study the excavation of the tunnel. The excavation has
been simulated in a single stage. At the boundary of the tunnel, the forces corresponding to in-situ
state of stress condition (i.e. hydrostatic stress is taken as 25 units) were computed at the nodal
points and applied in the opposite direction to simulate the excavation of the tunnel. Again the
problem is analyzed with the FEM and FEBEM using the discretization shown in Figure 2. The
radial displacements for both methods are shown in Figure 4. It is observed that as the extent of
boundary distance for the FEM increases, the FEM converges to the FEBEM solution. The yielded
zones determined by all methods are identical and are obtained as 70 units from the boundary of
the tunnel.

Table 3 gives a comparison between the FEM and FEBEM in terms of the computation time
required for convergence, The CPU-time is least for the FEM with a boundary distance of 4.3R

and highest for the FEM with 15R . In order to fairly, compare the two methods in terms of CPU-
time, one should consider the accuracy. Although, the FEM yields less CPU-time when the

boundary is truncated at or less than 8.7R its solution is not accurate as given in Figure 4,

However, the FEM solution with boundary truncated at 15R has the same level of accuracy as
that by FEBEM, but it requires a higher CPU-time.

Table 3: Comparison of CPU-Time for Elasto-Plastic Analysis of the Tunnel

Method Boundary Distance CPU-time (Sec.)
FEM 43R 4
FEM 8.7R 5
FEM I5R ]
FEBEM J6R 6
0.3

——=—— FEM/BEM
——«—— FEM (16R)
—w—— FEM (8.7R)
——»—— FEM (4.3R)
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260 300 340
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Figure 4. Radial Displacements for Elasto-Plastic Analysis of the Tunnel
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4, CONCLUSIONS

The extension of the sequential Dirichlet Neumann Iterative coupling of FEM and BEM to elasto-
plasticity is investigated in this paper. An application in infinite elasto-plastic domain problem is
presented. Beside the convenience of less input data, the iterative FEBEM has the advantage of
preserving the identity of both FEM and BEM. The numerical examples show that the iterative
FEBEM, in general, yields more accurate results and less CPU-time as compared to FEM,
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