EXACT STIFFNESSES FOR TAPERED MEMBERS

By Husain Jubran Al-Gahtani’

ABSTRACT:

A simple method for deriving closed-form expressions for the components of the stiffness matrix

and fixed-end forces and moments for tapered members is presented. The governing differential equations and
the boundary integral method are used to obtain exact expressions for axial, torsional, and flexural stiffnesses.
The necessary fixed-end forces and moments are also derived. The procedure of the proposed method is ex-
plained through a practical class of tapered members. The procedure, however, can be extended to other axial,
torsional, and flexural stiffness variations. The correctness of the obtained stiffness expressions is verified through

numerical examples.

INTRODUCTION

Members with variable cross sections are used in many
structural applications to optimize the distribution of weight
and strength and sometimes to satisfy architectural and func-
tional requirements. Examples are highway bridges, buildings,
space and aircraft structures, as well as many mechanical com-
ponents and machines. Since these members are involved in
many important structures, it is necessary to analyze them with
a greater precision.

The analysis of tapered members are covered in many clas-
sical texts on structural analysis, ¢.g., Timoshenko and Young
(1965) and Hibbeler (1990). The analysis involves lengthy cal-
culations and requires tables and charts which are not appli-
cable in general cases. The other alternative is to use numerical
methods such as the finite-element method, e.g., Bathe (1982),
where the member is represented by a number of segments
and the stiffness matrices for the segments are superimposed
to produce the stiffness matrix for the whole member. The
increase in the number of equations due to the process of
member discretization is not disadvantageous anymore, be-
cause of the emergence of modern super computers. The real
disadvantage is the huge amount of input data required, es-
pecially in the case of large structures.

The purpose of this paper is to present a simple, yet exact,
procedure for deriving closed-form stiffness expressions for
symmetrically tapered members (having a straight centroidal
axis). The proposed procedure is based on the boundary in-
tegral method which does not require discretization of the
member. The method produces exact relations among the
forces and displacements at the member ends. The equilibrium
equations of the member are based on the Bernolli-Euler beam
theory, which is quite adequate provided the tapering ratio is
not too great [see Boley (1963)]. The procedure is explained
through a practical class of tapered members. Finally, the cor-
rectness of the derived expressions is demonstrated through
numerical examples.

PROBLEM STATEMENT

Consider a nonuniform Bernoulli-Euler beam of length L as
shown in Fig. 1. The static stiffness equation can be written
as

F = KU e))

where K = a 12 X 12 stiffness matrix; F = a column matrix

'Asst. Prof., Dept. of Civ. Engrg., King Fahd Univ. of Petr. & Minerals,
Dhahran 31261, Saudi Arabia.

Note. Associate Editor: Eric M. Lui. Discussion open until March 1,
1997. To extend the closing date one month, a written request must be
filed with the ASCE Manager of Journals. The manuscript for this paper
was submitted for review and possible publication on October 25, 1995.
This paper is part of the Journal of Structural Engineering, Vol. 122,
No. 10, October, 1996. © ASCE, ISSN 0733-9445/96/0010-1234 1239/
$4.00 + $.50 per page. Paper No. 11886.

1234 / JOURNAL OF STRUCTURAL ENGINEERING / OCTOBER 1996

containing the axial forces (F, and F;), torques (F, and Fy),
shear forces, and bending moments associated with flexure in
the xy-plane (F,, F;, F, and F;), and the shear forces and
bending moments associated with flexure in the xz-plane (F,
F,, Fs, and F))); and U = a column matrix containing the
corresponding axial, torsional, and flexural displacements. It
is assumed that: (1) the beam is made of a homogeneous iso-
tropic linear elastic material with elastic modulus E and shear
modulus G; (2) the centroidal axis (x-axis) is straight and the
directions of the principal axes (y- and z-axes) are the same
for all cross sections; and (3) warping and coupling between
torsional and flexural behaviors are negligible. In addition to
the foregoing, the taper is assumed such that the cross-sec-
tional area A(x), polar moment of inertia J(x), and moment of
inertia I(x) are given by

n n+2
cX cx
A(x) = Ao <l + z) ; J)y = <l + z) (2a,b)

and

cx

n+2
Ix) =1, (1 + z) (20)

where A,, Jy, and I, = cross-section properties at the origin; ¢
= a constant that accounts for the degree of tapering; and n =
a real number which depends on the shape of the cross section.
The applicability of (2) with n = 1 and n = 2 for different
shapes of the cross section are discussed by Banerjee and Wil-
liams (1985). The formulation given in the following section,
however, is valid for other values of n as well as for other
functions A(x), J(x), and I(x).

To derive the stiffness matrix, the differential equations gov-
erning the axial, torsional, and flexural behaviors of the beam
will be considered separately.

Axial Stiffness
The differential equation is given by

d du
E [EA(x) E] + px)=0,x € (0, L) 3)

FIG. 1. Sign Convention for Tapered Beam



where u = axial displacement; and p = distributed axial force.
The boundary conditions are

u(0) = U, or EA % ©0) = —F, (4a)

u(l) = U; or EA % y=F (4b)

To obtain the so-called inverse formulation, multiply both
sides of (3) by a weighing function u* and integrate over the
length of the beam twice to get

L L
d du* du
— — + *EA —_—
J‘; u o [EA(x) dx] dx [u (x) dx]o
du* L L
— | uEA(x) — | + u*p(x) dx =0 A)
dx o Jo
Let us choose u* to be the fundamental solution, i.e., the so-

lution of the following differential:

d

a [EA(x)

%
di] + Ax — £ =0,x € (—, ®) )
dx
where A(x — &) = Dirac delta function representing a unit axial
load applied at the point x = €. Using (6) in (5), the following
is obtained for 0 < § < L:

kK d *
wE) = EA ‘% ©, OU, — EA % (L, ©U, + u*©, OF,
L
+ u(L, OF, + f w*(x, Op(x) dx @
0

Assuming that we can solve (6) for u*(x, £), (7) gives the axial
displacement at any point £ in terms of the boundary values
u(0), u(L), EA duldx(0), and EA dul/dx(L). Applying (7) at the
beam ends (i.e., § = 0 and § = L), yields the following written
in a matrix form:
du* u*
1 EA . ©, 0) EA I (L‘, 0) {Ul}
7

du* du*
—FEA — (0, 1+ EA— (L, L
d.x(OL) dx( )

L
f u*(x, O)p(x) dx
(]

_u*0,0 u*L,0)| )F,
- [u*(O, L u*l, L)] {E} e ®
f w*(x, L)p(x) dx
[}
An integration of (6) yields
du* 1
EA e = 3 sgn(x — &) &)
where sgn(x — &) =1 for x > £ and sgn(x — §) = —1 for x <
£ To obtain u*, integrate (9) over the range £ to x, i.e.
1 *dx
* = —= — —
u*(x, &) > sgn(x — §) . EAG) (10)

Substituting A(x) from (2a) we get

L 1 L+
W ( § = —sgn(x — & o 5= log (L — Z) n=1 (lla)

L

u*(x, ) = sgn(x — &) et = DEA,
0

1 1

<1+c%) <1+c%>

If the fundamental solutions given by (11) are evaluated by
taking the limits as § — 0 and § — L, (8) becomes

,n>1 (11b)

L
l __l f u*(x, 0)p(x) dx
2 21U |10 afjF +1°
1 1 [\ e Of]|F L
2 2 fu*(x,L)p(x)dx
0
(12)
where
L log(l + ¢) _
= A, 20 ,n=1 (13a)
_ + 1-n
_L1-d+o " (13b)

EAs 2¢(1 — n)

To obtain the stiffness equation, multiply both sides of (12)
by the inverse of the first matrix on its right-hand side to get

Ko K| UL _J]F P,
[symm Km] {U7} B {B} * {P7} 1

where
EA c
Kii=Ky7 = _L—o my n=1 K,;=K;, = ~K,,n=1
(15a,b)
- N ()
Kigh,=K, = Lid+o" -1 n> 1 (15¢)
K;=K,;=-K,,n>1 (15d)

and the column matrix {P} contains the fixed-end axial forces
which are given by

-

The components of this matrix depend on the applied load p(x)
as will be discussed later.

J- u*(x, Op(x) dx
’ (16)

RI—= ©
O R [m=

L
J u*(x, L)p(x) dx
0

Torsional Stiffness

For circular cross sections, the differential equation is given
by
% [GJ(x) t—;%] +tx)=0,x€ (0, L) 17)
where 0 = torsional rotation; and 7 = applied distributed torque.
Eq. (17) can also be used to approximate the torsional behavior
of several cross sections if G is given a suitable artificial value.
Since (17) is similar to (3), and since the function GJ(x) is
two orders higher than FA(x) [see (2)], we can use the results
of (15b), after replacing n by n + 2, i.e., the torsional stiffness
equation becomes

Ko Ko | [U) _[F) [P
K10.4 KIO,IO UlO Fl() PIO
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(18a)

where



Gl —(1 +n)
L [d+g" -1

Kio = Kipa=~Kesn = 1

Kis = Kig10 = (18b)

(18¢)

and P,, P, = fixed-end torques which will be discussed later.

Flexural Stiffness

The differential equation governing flexure in the xy-plane
is given by
d? d*w
= El(x) oz +q(x)=0,x € (O, L) (19)
where w(x) = lateral deflection; and g = distributed lateral load.
The slope S(x), moment M(x), and shear V(x) are related to
the primary variable w(x) by

dw d*w d d*w
Sx) = Zx_’ M(x) = EI(x) E, and V(x) = Z [El(x) E]
(20a,b)

The end conditions are w=U,, S=Us, M= —F,, V= F,
atx=0; and w = Ug, S = U12,M=F12, V= _'Fs atx= L.
Following the same procedure, i.e., multiplying (19) by a fun-
damental solution w* and integrating four times, the following
equation, which is similar to (7), can be obtained:

w(E) = [w*(x, HV(x) — S*(x, EM(x) + M*(x, £)S(x)

L

— VR, w0l + j qlxIw*(x, £) dx

o (21)
where S*, M*, V* are related to w* through the same differ-
ential operators given by (20). Once the fundamental solution
w* is known, (21) gives the deflection at any point inside the
beam in terms of the values of deflection, slope, moment, and
shear at the beam ends and the given load g(x). An equation
for the slope can be obtained by differentiating (21) with re-
spect to € The result is

S(E) = [w*'(x, V(x) — S*'(x, OM(x) + M*'(x, )S(x)
L
- V¥, wolss + f gw*'(x, §) dx 22)
(1]
where ' indicates differentiation with respect to £ Applying
(21) and (22) at the beam ends and using the boundary con-
ditions, the following are obtained:

1 —v*(0,0) M*0,0) V*(L,0) —M*(L,0) U,
—v*'(0,0) 1+M*0,00 V*(L,0) —-M*'(L,0) Us
—v*0, L) M*Q,L) 1+V*L,L) -—-MXLL) Us
—v*'(0,L) M*'(0, L) V¥(L, Ly 1-M*(L,L) U,

-w*0,0) —-S%0,0) -—w*(,0) —S%L,0) F,

_{ —w*(0,00 —8*'(0,0) —w*(L,0) —5*(L0) Fs

| —w*0,L) -S*©O,L) -wx(L,L) -SXL,L) Fy
—w*'(0,L) —-S$*'(0,L) —-w*'(L,L) —-S*W.L)]\F:.

~

r L
f w*(x, 0)g(x) dx
o

j w*'(x, 0)g(x) dx
L L @3)

L
j w*(x, L)g(x) dx
[

f w*'(x, L)g(x) dx
1]

- P
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To evaluate the foregoing matrices, we need the fundamental
solution w* and its derivatives. For a uniform beam, they are
given by Beskos (1989)

— 3 _ 2
we = —sgatz — § Ef); 5 = —sgnx ~ § LY
0 0
(24a,b)

x—-¥8

M* = —sgn(x — &) —2-—; V* = ——% sgn(x — &) (24¢,d)

Since the change in stiffness does not effect V* and M*, (24c¢)
and (24d) are also valid for nonprismatic beams. Therefore,
we can obtain S* by integrating M*, i.e.

24 M*
S*(x, &) = dx 25
3 ) J; EIG) (25)

Substituting I(x) from (2¢)

L x+e

* s = s =1
S*(x, & AEL L+ o + o " (26a)
L* (—x + £*GL + cx + 2cb)
S*(x, &) = \ b
&= T L+ L+ 71 @D
Integrate S* to get w*
} cx — §
* = —_—
W O = e [ L+ ct
L + c§ L+ ex
L+ cx T+ c&]’ n=1 (27a)
L x-8&
* =
WO = R LT el et @D
Using (26) and (27) in (23), we get
1 1 L T
- 0 —_— —
2 2 2
0 l 0 _l U, 0 0 B v
2 2 UsV _ | 0 0 & ¢
1 L 1 Usg B —v 0 O
2 32 32 9| l\u. ~5 € 0 0
1 1
Lo 2 % 2.
- L ~
J w*(x, 0)g(x) dx
0
L
F, j w*'(x, O)q(x) dx
Fod v 17 y
Fy L
Fy, f w*(x, L)g(x) dx
0
L
f w*'(x, L)g(x) dx
LJo J
where
3 + 2 +
- L 2c +¢ 23(1 Alog(l + ¢) (29a)
EI 4c’(1 + ¢)
L’ 1 L 1
== — = - 29b,
Y=Eaq + o Ead v o (PO



L 2+c¢

8=—EI.ZEI+—C)2’"=1 (29d)
B=§—;1—2('ich—)z; v=g%% (2%, 1)
- —}LE—;I—%—“L% 298)
€=—E£IQ.61(—13+~:)?€§,'1=2 (29h)

As before, the stiffness equations can be obtained by multi-
plying (28) by the inverse of the matrix on the its right-hand
side to get

K2,2 K2.6 K2.8 K2.12 U2 F2 PZ
Kes Kes Ksnz Us \ _ ] Fs Py
symmetric Kgs Kaiz U | " | Fs + Py 30)
K12,12 UlZ F12 P12
where
El, &2 + ¢ El, ¢
22 = L_30 —IT); 26 = ?0' Eé Ky = —K,;, (Bla-c)
El, (1 + ¢
Ko = Iz KK (d)
El, —2¢ — 3¢ + 2(1 + 2¢ + Alog(l + ¢)
66 — L KK (316)
Ke,s = —Kz,s (3 lf)
_EL( + o)Qc + A — 2 + ologl + ¢ 3le)
12 = KK J
Kis = Kr3; Ksio= ~Kppo (Blh,i)
El, (1 + ¢P(—2¢ + ¢* + 2log(l + ¢) .
1202 = To ( X< KK Jog( wn=1 (31
where
KK =—2c + (2 + o)log(l1 + ¢) (B1lk)
and
EJ
Kz = 259 [41 + o3 + 3¢ + A (310
EI
Kis = —L-;l 2 + )3 + o)) Glm)

El
Koy = ~Kozi Ko =73 201 + f3 + 20]  Glno)
EI
Koo =77 1401 + 0] B1p)

EI
Kig=—Kiso Kepa= To [2(1 + ¢)*; Kys=K;, (Blg—s)

EI
Koo = —Koiy Kz = TO 41 +c’,n=2 Q@lt-w

The last column matrix in (30) is given by

L

w*(x, 0)g(x) dx

L
P, 0 0 € ¥ w*'(x, 0)q(x) dx
Pl 1 0o 0 & B,
Ps[ Be—v5| € -y 0 0 L [
P -3 B 0 O w*(x, L)g(x) dx

|
[
|

L
f w*'(x, L)g(x) dx
. 0 B
(32)
which, again, depends on the type of loading function g(x) as
discussed in the following section.
Similar results for stiffnesses and fixed-end actions can be

obtained for the case of flexure in the xz-plane (i.e., K, 3, K,
..y Ki1n1, and Py, Py, Py, Pyy).

Member-End Actions due to Member Loads (Column
Matrix P)

To complete the stiffness analysis, the member-end actions,
i.e., fixed-end axial forces P, and Ps; fixed-end torques P, and
Py, fixed-end shears P, and P;; and fixed-end moments P, and
P, must be determined for the given load function. We will
consider the two cases of concentrated and uniform loads.

End Actions due to Concentrated Loads

The loading function can be represented by p.A(x — x.),
t.A(x — x.), and q.A(x — x.) for the axial, torsional, and flex-
ural cases, respectively, where p,, ., and g, are the respective
magnitudes and A(x — x.) is the Dirac delta function which
represents a unit charge applied at the point x = x.. The fixed-
end axial forces, torques, shear forces, and moments can be
calculated from (16), (17), and (32). The results are given in
Appendix 1.

End Actions due to Uniform Load

Let the load be represented by p,, ¢,, and ¢, for the axial,
torsional, and flexure cases, respectively, and using the same
procedure, obtain the fixed-end actions given in Appendix I.

The end actions for other types of loading can be obtained
by substituting the loading functions in (16) and (32).

NUMERICAL CHECKS

To check the correctness of the foregoing stiffness expres-
sions, the following examples are considered.

Example 1

Consider a tapered beam with a thin circular section as
shown in Fig. 2. The beam is assumed to have a lineraly var-
ying diameter while the thickness is kept constant. According
to the geometry, ¢ = 1, n = 1, and therefore the results of the
exact stiffnesses as calculated from (15a,b), (18b,c), and
(3la)-(31j) are given in the third column of Table 1. The
fourth column of Table 1 contains the corresponding stiff-
nesses if the beam were represented by 100 uniform segments.
Table 1 shows that all the exact stiffnesses agree to about
0.038% or better with the numerical results.

Example 2

Consider a beam similar to that of example 1 but with a
solid circular cross section which has a diameter increasing
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linearly from 100 mm at one end to 200 mm at the other end.
In this case: ¢ = 1 and n = 2, and the results of the exact
stiffnesses as calculated from (15¢,d), (18), and (31/)-(31u)
are compared to those obtained for the corresponding stepped
beam (with 100 uniform segments) as given in Table 2. The
results, once again, are in excellent agreement.

Example 3

As a final example, consider the frame in Fig. 3. The frame
is composed of four members and the stiffness of each member
is varied in a way such that n = 1. The axial deformation were

() Section a-a

5mm

FIG. 2. Geometry of Tapered Beam (Example 1)

TABLE 1. Stiffness Components for n=1
Numerical Percent
Action Stiffness Exact (N = 100) difference
(1) (2) (3 (4) (5)
Axial K, 119.3823000 119.3805000 -0.0014507
K, —119.3823000 | —119.3805000 0.0014507
K, 119.3823000 119.3805000 —~0.0014507
Torsional Kea 0.1381337 0.1381294 ~0.0031500
Ko -0.1381337 —0.1381294 0.0031500
Koo 0.1381337 0.1381294 -0.0031500
Flexural K,, 0.1508697 0.1508373 -0.0214571
(XY-plane)
K6 0.2155514 0.2154818 | —0.0322805
Ky —0.1508697 —0.1508373 ~0.0214571
K12 0.5387976 0.5387046 -0.0172716
Ko 0.5388499 0.5387046 ~-0.0269862
Kes —0.2155514 —0.2154818 -0.0322805
Ks12 0.5389085 0.5387046 -0.0378625
Kqs 0.1508697 0.1508373 -0.0214571
Kq 12 ~0.5387976 —0.5387046 -0.0172716
K2 2.1550800 2.1548180 ~-0.0121266
TABLE 2. Stiffness Componentsforn=2
Numerical Percent
Action Stitfness Exact (N =100) difference
(1) (2) (3) (4) (5)
Axial K., 86.1152300 86.1148500 | —4.4297790E-004
K, —86.1152300 | —86.1148500 4.4297790E-004
K, 86.1152300 86.1148500 | —4.4297790E-004
Torsional Kas 0.1776048 0.1775949 | —0.0055461
K0 —0.1776048 —0.1775949 0.0055461
K00 0.1776048 0.1775949 | —0.0055461
Flexural K, 0.1017345 0.1017172 | —0.0170009
(XY-plane)
K6 0.1695687 0.1695286 | —0.0236357
K5 —0.1017345 —-0.1017172 | —0.0170009
K, 0.3391006 0.3390572 | —0.0127803
Koo 0.4622070 0.4621159 | —0.0197085
Kos —0.1695687 —0.1695286 | —0.0236357
Ko 0.3856321 0.3855272 | —0.0272106
Kis 0.1017345 0.1017172 | —0.0170009
Ky, 0.3391006 —0.3390572 | —0.0127803
K2 1.3098710 1.3097590 | —0.0085282
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FIG. 3. Frame with Variable Cross-Section Members (Example 3)

TABLE 3. Results for Frame with Nonprismatic Members

Number of
segments
per member 3 ]
(1) ] (3)
10 —0.02347 —0.01830
20 —0.02369 —0.01845
30 —0.02372 —0.01848
4 (Exact) —0.02375 —0.01850

restrained in all members. The unitless data used in the anal-
ysisis: g=1,L=1,1, =1, I, =2, and E = 1. The solution
based on the derived stiffness expressions is compared to that
obtained using the structural analysis package ‘‘STRUDL’’ by
dividing each member into 10, 20, and 30 uniform segments
as given in Table 3. In Table 3, & is the vertical deflection
along the centerline, and 6 is the rotation at the left corner.
The results show the convergence of the numerical solution to
the one based on exact stiffnesses. However, the data prepa-
ration time as well as the computer time are cut drastically
using the present analysis.

CONCLUSIONS

In this paper, a simple, yet exact, method of deriving closed-
form expressions for the axial, torsional, flexural stiffnesses,
and fixed-end actions for a class of tapered members was pre-
sented. It is well known that the only source of approximation
in the boundary integral method is the approximate modeling
of the boundary. The boundary in the present case is simply
the two ends of the member over which the boundary condi-
tions are satisfied exactly. The correctness of the derived ex-
pressions is verified using numerical examples. The derived
expressions are useful for problems of shape optimization of
tapered members. They also can be combined with any space
frame program to perform exact analysis of frames consisting
of tapered members.

APPENDIX|. FIXED-END ACTIONS
End Actions for Concentrated Loads
Define £ = x.L.

Fixed-end axial forces

log(l + c%)
=p. |l ——=——— Py=p.— P,n=1 (@3ab
P, Pc[ ]0g(1+c)] 7 =P, IR (33a,b)
1—x
Pi=p. T P;=p,— P,n=2 (33c,d)

Fixed-end torques



(1-D2+c+ cx)
QR+ o0 + cxp

3
tc 1 +c . _ _ _
P‘_c(3+3c+c2) [(1+Cf) 1], Po=t,—Pyn=2
(34c,d)

P,=1, Po=t,— P,n=1 (34ab)

Fixed-end shears and moments

1+ cx
c(2—2£+ci—cf2)+(2+c+2ci+c2f)log( “)

1+c¢
Pi=q KK( + )
(35a)
- - ~ _ 1+cx
cx(1 — x) + log(1 + cx) — %2 — H)log(l + ¢) + cxlog ( . c)
P6= ch KK
(35b)
Pi=q.— Py; Pu=—qx,— Ps+ PsL,n=1 (35¢d)
_ (=1 + DM+ 2% + 2c8)
P, =q. a+ Cf)z (35e)
1 — %P
P, =qg, —mm 5
6 qc (1 + C.f)z (3 f)
P8=qc—P2; P12=—qcxc_P6+P8Lan=2 (35g,h)
End Actions for Uniform Load
Fixed-end axial forces
L 1 1
= u_ T~ ; P = u - P I = $4
Py c [log(l + ¢) c] TEP wn=1 (36ab)
1 + o)og(l + -—
P1=PuL( C)ng:z ) C, P,=p,—P,n=2
(36¢,d)
Fixed-end torques
t,L
P4 = m, PlO =t — Pyn= 1 (37a,b)
Pimtl—— . pi=t—Pon=2 (cd
4 =1, 2(3+3C+C2), 10 =1L 4 N = (37c.d)
Fixed-end shears and moments
—6c — ¢+ (6 + +
P, = gL 6¢c — ¢ (6 + 4c)log(l c) (384)

2cKK

Py =

oL 2c* — % ~ (4c + 3cAlog(l + ¢) + (2 + 4c + 2Alog’d + ¢)
4 20KK
(38b)

2

L
Pg=qL — P;; P, = —qT ~Ps+ PsL,n=1 (38¢c4d)
6¢c + 9 + 4¢® — 2(3 + 6¢ + 4c + Alog(l + ©)
P2 = q,,L 2
c
(38¢)
6¢c + 5¢ — 2(3 + 4¢ + Alog(l + ¢
P6 = quL2 ( 2 . ) g( ) (38f)
C
9.L?
Py=¢q,L — P;; Pp=— 2 — P+ PiL,n=2 (38g,h)
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APPENDIX IIl. NOTATION

The following symbols are used in this paper:

A(x), Ay = area of the member cross section,;
¢ = taper ratio;
E = elastic modulus;
F = force vector;
G = shear modulus;
I(x), I, = moment of inertia of the member cross section;
J(x), Jo = polar moment of inertia of the member cross sec-
tion;
K = stiffness matrix;
KK = constant defined by Eq. (31b);
L = length of member;
M(x), M* = bending moment;
n = a real number which determines taper profile;
P = fixed-end actions vector;
p(x) = distributed axial load;
g(x) = distributed flexural load;
S(x), $* = slope;
H(x) = distributed torque;
U = displacement vector;
u, u* = axial displacement;
V, V* = shear force;
w, w* = flexural displacement;
xyz = coordinate system,
o = constant defined by Eq. (13);
B, v, 8, € = constants defined by Eq. (29);
6 = torsional rotation; and
£ = any point along the member.

JOURNAL OF STRUCTURAL ENGINEERING / OCTOBER 1996 / 1239



